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M. Longo   
  

ERRORS AND THE TREATMENT OF DATA 
  
 Essentially all experimental quantities have an uncertainty associated with them.  The 
only exceptions are a few "defined" quantities like the wavelength of the orange-red light from 
Krypton-86, which is defined to be 1/(1,650,763.73) of a meter.  In other words, we have 
defined our unit of length in terms of this wavelength.  The uncertainty in physical 
measurements becomes of crucial importance when comparing experimental results with 
theory.  As you all know, the basis of the "scientific method" is to test our hypotheses against 
experimental data.  Unless you take the experimental errors into account in the physics labs 
you'll very quickly find that you have disproved all the "laws" of physics!  Obviously, we'd 
rather not let you go away with that impression, so we want you to learn how to estimate how 
large an uncertainty or error to attach to your results due to uncertainties in your 
measurements.   
 The assignment of probable errors to physical data is not easy.  Some sources of error can 
be estimated fairly accurately;  others may be difficult or impossible to estimate.  The history 
of physics has many notorious examples of experimenters who have grossly underestimated 
the errors in their measurements.  This is partly a result of human nature–you like to think your 
experiment is more accurate than anybody else's–and partly a result of lack of knowledge.  
Sometimes there are sources of errors the experimenters didn't know about;  sometimes they 
knew about it but didn't know how to estimate the effect on their results properly.            
  
 
Systematic vs. Random Errors   
 Random errors are those produced by unknown and unpredictable variations in the 
experimental situation.  Systematic errors are errors associated with a particular instrument or 
experimental technique (though not all errors associated with an instrument are systematic).  
The difference is perhaps best illustrated by some examples from target shooting.  

 
 The random errors might be due to variations in the cartridges, jitter while aiming, etc.  
The systematic errors might be wind, misaligned sights, or a consistent bias in aiming.  Note 
that random errors become smaller if the data are averaged over many tries or measurements, 
while systematic errors do not.  In other words, we can decrease random errors by taking many 
measurements and averaging, but we must combat systematic errors in other ways. 
  
The Normal Distribution, Mean, and Standard Deviation   
  Suppose we consider a measurement whose result can take on a continuous range of 
values.  To be concrete, let us imagine a very simple experiment.  We want to measure the time 
it takes a ball to fall 1.00 meter.  To get an accurate value we use a good stopwatch and repeat 
the measurement 200 times.  Figure 1 shows the results of our hypothetical experiment in the 
form of a histogram.     
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The vertical height of each rectangle or "bin" gives the number of measurements that lie within 
the range of the bin.  For example, there were 29 measurements with fall times between 0.485 
and 0.495 sec. 
 
  The distribution in Fig. 1 is somewhat idealized, but is typical of what real data from a 
well-designed and executed experiment might look like.  The most notable features are:   
 (1)  The values are clustered about a well-defined mean value which is close to the most 
probable value (the value of  t  where the distribution has its maximum).  The arithmetic mean 
of the  t  values in Fig. 1 is approx. 0.497 s.      
 (2)  Values that are far from the mean are very unlikely. 
 (3)  The distribution is reasonably symmetric about the mean.  There is no obvious 
skewing toward the high or low side. 
  
 If we took many, many measurements and made the bins very fine, our histogram might 
begin to look like the smooth, bell-shaped curve.  This curve is the limiting case in an ideal 
situation.  It is referred to as the normal or Gaussian distribution.  Measurement errors that 
follow this distribution, are said to be normally distributed.  The mathematical form of the 
normal distribution is really not very important because, in a given experiment, you cannot 
prove that the measurements will follow a normal distribution.  Nevertheless, a distribution 
resembling the normal distribution is usually found, and it is usually assumed that a normal 
distribution is appropriate.   
 The bell-shaped curve and, to a good approximation, the histogram of Fig. 1  can be 
characterized by two quantities, the mean value and the width.  The mean t  of the measured 
times is just the arithmetic average of the data,  
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Here t1, t2, . . . are the measured times, the symbol  Σ   stands for a sum, and N is the number of 
measurements.  (For the normal distribution, the mean is defined in terms of an integral 
analogous to Eq. 1.)  The width of the distribution can be defined in various ways – for 
example, the full width at half maximum  or the root mean square (rms) deviation σ  that is 
defined as 
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where t  is the mean from Eq. 1.  The rms deviation turns out to be the most common, and we 
shall accept it as our definition;  σ  can be thought of as the probable error or uncertainty in one 
measurement.  It is also called the standard deviation of the measurement.  We shall generally 
refer to it as the standard deviation and use the symbol σ.  Generally then we will use the 
mean, defined in Eq. 1, as the best estimate of the measured quantity, and the standard 
deviation of the mean 

! 

" , defined in Eq. 3 below, as the best estimate of the uncertainty of the 
mean. 
 If the measurements follow a normal distribution then ideally 68.3% of the measurements 
lie within ±1 σ from the mean.  Thus, from Figure 1, which contains 200 measurements, we 
can estimate σ  by counting off 68 measurements in either direction from the mean.   This 
includes a band of width approx. ±0.030, so the standard deviation per measurement is approx. 
0.03.  Note that we could get a more precise value of σ  by numerical calculation from Eq. 2, 
but the increase in precision of σ  is insignificant.  In other words, we shouldn't feel obliged to 
estimate σ  to very high accuracy.  In practice, it is safest to use the histogram method for 
estimating σ  when possible because it gives a chance to judge whether the data look 
"normally" distributed.  We might be tempted to discard a measurement that lies many 
standard deviations from the mean.  (We shall not discuss the correctness of this procedure;  
the point is that it is often done.)  It is important to realize that σ  is a measure of the probable 
uncertainty of one measurement —i.e., if we make one measurement it has a 68% probability 
of being within 1σ  of the mean value.  The uncertainty in the mean is much smaller than σ 
because we have made many measurements.  For  N  measurements the standard deviation of 
the mean 
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This assumes that the measurements are independent and uncorrelated.  In the example of 
measuring the fall time of a ball, if we started and stopped two clocks with the same switches 
the measurements of the two clocks would be strongly correlated;  the amount of correlation 
would depend on how good the clocks were.  (The better they are, the stronger the 
correlation.)  
  The result of a series of measurements of a quantity A  and its error or uncertainty are 
usually written in the form 
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A  ±  " .  In the example above, the mean time was 0.497 sec and 
the standard deviation of the mean would be 

! 

0.03/ 200 , so we would write 
     t      =   0.497 ±  0.002 sec    

Ideally this means that the "true" value of   t   has a 68.3% chance of lying between 0.495 and 
0.499 sec.  Two results are considered to be consistent with each other if they are within 1 or 2 
standard deviations of each other.  Obviously some judgment is required.  
 
 The above discussion assumes that all of the measurements in an experiment are of equal 
intrinsic accuracy.  If some measurements are better than others, the better ones should have a 
higher weight in computing the mean.  The calculation of the weighted mean and probable 
errors in this kind of a situation is discussed in many references.  
  
 



Experiments Whose Outcome Is an Integer:  The Square Root Rule  
 Often the result of an experiment or measurement is an integer—for example, the number 
of mice out of an initial sample of 100 that die within one year or the number of radioactive 
nuclei out of a sample that decay in one second.  The standard deviation of the number of such 
"events" (deaths, decays, or whatever) can be estimated by the square root rule.  If N is the 
number of events, the standard deviation in N is 
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 For this to be an accurate estimate, the following conditions must be satisfied. (The better 
they are satisfied, the better the estimate of σ.)  
 (1)  The number of events N must be large.  [Some people might consider   N > 10 to be 
large enough.]  
 (2)  The probability that any member of the initial sample dies or decays (or whatever) 
must be small.  If, for example, we did an experiment to see how many of 100 mice would die 
within 100 years, the answer would be 100±0.  The probability of death is 100%, surely not 
small.  On the other hand, if we start out with 108  radioactive nuclei and they decay at the rate 
of 103 per sec, in a 10 sec "experiment" the number of nuclei that decay would be N = 10000 ±  
100.  The square root rule should work very well because N >>1 and the probability of a given 
nucleus decaying is 10-4 during the experiment.  
 
Estimating Uncertainties   
 In most of the experiments you will be asked to estimate the error or uncertainty in 
quantities you measure, for example, a distance or time interval.  This requires some common 
sense, and we might well give some examples.  Often the smallest division of a scale or meter 
will give you a good idea of the uncertainty to apply to a measurement.   A reasonable 
minimum error might then be one-third of the spacing between scale divisions.  If the same 
measurement can be repeated a number of times, you can estimate the error from its 
reproducibility or by calculating the standard deviation from Eq. 2.  If a quantity is determined 
from the slope of a graph, make reasonable variations of the fitted line. 
 To estimate the uncertainty in a calculated quantity (one not measured directly), you 
should use error propagation as described below.    
 
Error Propagation   
 Usually we cannot make a direct measurement of the quantity we are interested in.  We 
must measure another quantity or quantities and calculate the desired one from them.  In our 
example of the falling ball on the previous page, we might want the acceleration of gravity g.  
It can be calculated from the fall time t and distance of fall  y  from   g = 2y/t2.   We now ask 
how the standard deviation in g can be obtained if we know the standard deviations of  t  and y.    
 The rules for error propagation can be readily derived using calculus.  We merely state 
the results.  In this section, we shall call the quantity we want to measure Q and use  ∆Q  for its 
uncertainty (or standard deviation) .   We use A, B, and C to represent the quantities which are 
measured directly, such as y and  t in our example above, and  ∆A, ∆B, . . .  are their 
uncertainties. These quantities can either be means or individual measurements.  Note that it is 
often convenient to work with the fractional error ∆Q/Q.   
   (1)  If Q = cA where c is a constant (with negligible fractional error), then   
    ∆Q   =    ∆A             or         ∆Q     =     c ∆A                      (5) 
         Q           A 



 

 

   (2)  If Q = cAm where m is some power, positive or negative (integer or otherwise), then 
  ∆Q   =   m ∆A             or         ∆Q     =     cmAm-1 ∆A               (6) 
   Q              A     
 
 If Q depends on two quantities A and B, the following rules are useful:  
   (1)  If Q = A + B  or  Q = A – B  
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   (2)  If  Q = cAm Bn   where c is a constant,  

Q

!Q
   =   (

A

m!A
)
2
  +  (

B

n!B
)
2

(8)

The general rule for combining terms is given in Eq. 9 below.  More often than not, one of the 
terms will dominate;  the others give a small contribution to ∆Q.  
 With calculators readily available, it becomes practical to calculate the error in Q by 
"brute force."  [This also saves having to remember the above formulas!]  Merely calculate Q 
for the mean value of A, then calculate it again for A+∆A  (and  A–∆A  if it seems 
appropriate).  The difference will give ∆Q directly.  If Q is a function of more than one 
variable, vary each separately;  then combine the separate terms in quadrature, as in Eq. 9 
below.  Mathematically, if Q is a function of  A, B, and C,   or  Q = Q(A,B,C),  the standard 
deviation in Q is  
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where  ∆QA is the change in Q when A is varied by one standard deviation, ∆QB is the change 
in Q when B is varied by one standard deviation, etc.   
 As a numerical example, suppose  g = 2y/t2  and we know from a series of measurements 
that  y = (1.010 ± 0.014) meters and  t = 0.454 ± 0.008 s.  Clearly, the best estimate for g is g = 
2  x 1.010/(0.454)2 = 9.80 m/s2 , but what is the uncertainty in g?  Using the brute force 
technique, we find that g changes by approximately 0.36 m/s2 if we change t by .008 s, and by 
0.14 m/s2  if we change y by .014 m.  Then from Eq. 9, the overall uncertainty in g is the square 
root of the sum of squares of the contributions due to changing  t  and  y, 

!g   =   (0.14)
2
  +  (0.36)

2
   =   0.38 m/s

2

 
If instead we calculate ∆g from Eq. 8 with g = 2y/t2, we have c = 2,  A = y = 1.010,  ∆A = .014,  
m = 1, B =  t = 0.454, ∆B = .008, n = –2  and 
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   =   .038                  

Therefore, ∆g = .038 g = .038 x 9.80 = 0.37 m/s2.  Thus either method gives an overall 
uncertainty in the measurement of  g  of about 0.38 m/s2, and we would give our result for g  as  
g = 9.80 ± 0.38 m/s2.  The fractional error in g is  ∆g/g = 0.038  or approx. 4%. 
  



 

 

         
Rounding Off and Scientific Notation 
 The number of significant figures you give in your answer should be consistent with the 
accuracy of your answer.  It doesn't make sense to give too many (e.g., 9.96572 ± .6226) or too 
few (e.g., 10 ± .0014).  Write instead 10.0 ± 0.6 or 9.9563 ±0.0014.  Also always use scientific 
notation for numbers.   Don't write  A=9813122.0  ± 214667.0;   instead use  (9.8  ± 0.2) x 106. 
  
Fitting data to a Hypothesis —— Method of Least Squares     
 Often you will want to know if your data are consistent with a theory and perhaps 
determine the value of some constant in the theoretical expression which best fits your data.  
For example, an object dropped from rest is expected to have a velocity at time t 
                  v = –g t               (10)   
 where g is the acceleration of gravity.  Eq. 10 is the equation of a straight line, and g could be 
determined by graphing your data and estimating the slope.  Suppose, however, your data were 
for the position y vs time.  Then we expect  
                     y   =   y0  – 1/2  g t2      (11) 
This is the equation of a parabola that would be difficult to fit graphically.    
 There are mathematical techniques for fitting data to polynomials such as Eq. 11 with the 
general form  
                       y   =   co  +  c1t  +  c2t2  +  c3t3      (12) 
where the c's are constants.  These techniques are described in the references given below.  It 
would take us too far afield to go into detail here, but it is worthwhile to explain the general 
idea and some of the jargon.  The usual technique is called the method of least squares.  Let yi 
be the measured value of y at time ti and let σ  be the standard deviation in yi.  A measure of 
the goodness of fit of the fitting function (e.g., Eq. 11) to the data is the quantity  χ2 (referred to 
as "ki squared"),  
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where N is the number of data points.  χ2  is a measure of the discrepancy  between the data 
points yi and the fitting function y(ti), since  [ (yi - y(ti))/ σ i ]  is just the difference between the 
measured point  yi  and the value from the fitted curve  y(ti)  measured in standard deviations.   
The trick is to find the coefficients  ci  in the fitting function,  Eq. 12.  This is done by choosing 
them so that χ2  is minimized.  Since χ2  is a measure of the squares of differences between the 
data and the curve, the procedure is called the method of least squares. 
 
References on Errors and Treatment of Data   
 
 There are two handy paperbacks:  Theory of Errors by Yardley Beers (Addison-Wesley 
Pub. Co.); and Statistical Treatment of Data by Hugh D. Young,(Mc Graw-Hill Pub. Co.).  On 
the lighter side, there is How to Lie with Statistics by Darrel Huff (Norton Pub. Co.).  A 
readable but more advanced book is P.R. Bevington, Data Reduction and Error. 


