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1.   Temperature and the Ideal Gas Law 
(Note:  This is a fairly long experiment.  To save time, much of the graphing can be done “at 
home”.   As always, make sure that you have all the data you need before you leave.) 

1.1 Introduction 
 
The most important concept at the foundation of thermodynamics is that of thermal 
equilibrium.  We take this for granted in our daily experiences.  We know, for instance, that 
an ice cube will melt when taken out of the freezer – no matter what object “at room 
temperature” it is brought into contact with.  This is the essence of the utility of temperature 
and thermal equilibrium:  the direction of heat flow is independent of the substance involved - 
it depends on only temperature.  In fact, this defines temperature. 
 
More precise observations of thermal equilibrium are as follows.  First of all, as with the 
equally familiar notion of mechanical equilibrium, we may say that an isolated macroscopic 
system is in thermal equilibrium, or thermodynamic equilibrium, whenever it attains a state 
that is not observed to change with time, at least at a macroscopic level.  Obviously, for such a 
situation to occur, it is also necessary that the system in question is in (internal) mechanical 
and chemical equilibrium.   
 
At the foundations of thermodynamics is the experimental fact that two systems in thermal 
equilibrium with a third system must also be in thermal equilibrium with each other.  This 
is often referred to as the zeroth law of thermodynamics.  It is what leads to the empirical 
notion of a temperature scale.  For example, when a mercury thermometer is in thermal 
equilibrium with one object A,  we can measure the liquid volume of the mercury 
thermometer.  This is a meaningful measure precisely because any other object B, also in 
thermal equilibrium with our thermometer in the same state, would be in thermal equilibrium 
with the first object A.  We will observe, for instance, that heat will not flow between A and B.  
Empirically, the scale of temperature that we ascribe to the thermometer (say, the volume of 
the mercury) is arbitrary.  The temperature of a system is simply a property that determines 
whether or not it is in thermal equilibrium with other systems.  An entirely arbitrary 
temperature scale, as described above, might be useful for comparing the temperature of your 
room with its state an hour ago, but it makes for a poor way of communicating observations 
using totally different temperature sensors.  Defining a universal temperature scale is probably 
one of the most difficult tasks in measurement science.  Historically, the procedure was to 
simply declare by fiat two distinct temperature reference points.  For the Fahrenheit scale, 0oF 
was the temperature of ice mixed with rock salt while 100oF was (approximately) the 
temperature of the human body.  The Celsius scale uses the melting point of ice as the zero 
point with 100oC defined as the boiling point of water.  With either of these two definitions, 
one can construct a thermometer by simply dividing the difference in expansion of a mercury 
column by 100 units along the interval between the two temperature extremes. 
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This opens up the question of what happens when we try to measure temperatures below the 
freezing point of mercury or above its boiling point.  More subtly, if we choose a different 
thermal sensing liquid, such as alcohol, would the above procedure define the same 
temperature scale? The answer is:  “not exactly”.  Liquids and solids don't expand precisely 
linearly with temperature and such departures would affect a simple dividing scheme.  The 
way out of this morass is to adopt a thermodynamic temperature scale based on the second 
law of thermodynamics: 

  

!S =
!Q

T
                                                 (1.1) 

where ΔS is the change of entropy of a system and ΔQ is the corresponding change of its total 
energy. (See Chapter 21 of Halliday, Resnick and Walker, or Chapter 18 of Young and 
Freedman.)  Operationally, this is a pretty nasty procedure since measuring entropy is not 
easy to accomplish.  The alternative is to use the properties of especially simple physical 
systems as a secondary standard.  The two most accessible are ideal gases (approximated by 
helium) and black body radiation.  The first of these will be explored in this experiment;  the 
second will be the subject of the next assignment. 
 

1.2 Thermocouples 
 
Early in the 19th century, Thomas Seebeck discovered that a temperature gradient along a 
metal wire can cause a current to flow.  More specifically, what he observed was that a closed 
loop, formed of two different wires will maintain a current when the two junctions are at 
different temperatures.  In essence, this ``Seebeck effect" can be summarized by a (nearly) 
linear relationship between the voltage difference ΔV and the temperature difference ΔT 
between the ends of a metal wire:  

  

!V " #!T .  The coefficient α depends on the metal.  The 
magnitude of α is fairly small so electric potentials of the order of a millivolt or less are 
typical.  The approximate size of the Seebeck effect can be estimated from the free electron 
theory of metals.  The characteristic conduction electron energy is called the Fermi energy, 
EF.  In the simplest model, EF is given by: 
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where h is Planck's constant, me is the mass of the electron and n is the conduction electron 
density.  Since metals generally expand when heated, the Fermi energy will decrease slightly 
with temperature but with different rates for various metals. 
 
For the thermocouple junction shown in Figure 1.1, formed from wires of two different metals 
(A and B), the voltage difference between the free ends of the thermocouple is approximately 
proportional to the temperature difference between the junction and free ends:  
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), where TJ and TM refer to the temperatures of the junction and the leads 

connected to the meter.  The coefficient !"  for the thermocouple depends on the individual 
Seebeck coefficients αA and αB for the two metals. 
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Figure 1.1.   Schematic diagram of a thermocouple measurement system 

  
Construct a thermocouple by soldering or twisting together a copper and a constantan wire.  
Use about 3' of wire – you will need this length to conveniently arrange voltmeters and 
temperature baths.  You will need to strip away about 0.5 inch of insulation at the wire ends to 
make proper electrical contacts.  The copper wire has the familiar reddish tinge; the 
constantan wire is silvery.  You can solder the junction or just twist the pair tightly together 
with pliers.  A Hewlett-Packard model 34401A multimeter operating in voltage mode should 
be used to measure the voltage difference across the free copper and constantan leads.  These 
potentials are quite low, never more than 10 millivolts. 
 

• Experiment with your thermocouple by measuring the voltage for different 
temperatures of the junction.  For example, warm it up by holding it between your 
fingers or blowing on it.  How large a voltage is produced? 

• The input resistance of the multimeter is greater than 107 ohms.  Measure the 
resistance of the thermocouple wires you are using.  How long would they have to be 
to reduce the measured voltage by say 10%? 

• By comparing the voltage readings for two known temperatures, estimate the 
thermocouple sensitivity.  How accurately do you need to measure the voltage to sense 
a 1° C temperature change? 

 
The voltage output of a single thermocouple operating alone, is determined by both the 
temperature of the thermocouple junction and the temperature of the point where it is 
connected to the voltage-sensing device.  Since the latter is not usually well determined, this 
is not a satisfactory way of accurately measuring temperature (your answer to the previous 
question should give you some idea of how well you need to know these values).  To 
circumvent this problem, standard practice is to wire two thermocouple junctions in series.  
One of these junctions is placed in a standard reference bath such as melting ice, while the 
other junction senses the unknown temperature to be measured.  An analogous circuit is 
shown below in Figure1.2.  If the two batteries shown in the drawing have identical voltages, 
the voltmeter will read zero.  Such a circuit can easily detect small differences in potential 
between two cells much more accurately than measuring each battery separately.  For the task 
at hand, one can imagine replacing the two batteries with two thermocouples.  The potential 
across the voltmeter is now only a function of the temperatures of the two thermocouple 
junctions, completely independent of whatever other temperatures are encountered elsewhere 
in the circuit.  Use such a circuit for making the rest of the measurements described below.  
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This can be accomplished by adding another copper wire to the other end of the constantan 
wire to make a second junction. 

 
Figure 1.2  Measuring the potential difference of two batteries 

 
Thermocouples must be calibrated, not only because the proportionality constant, α, is a 
material-dependent parameter, but also because the linear relationship of voltage to 
temperature is not strictly satisfied.  A number of standard temperature references are used for 
calibration.  A few of these are shown in Table 1.1.  To obtain the parameters for a linear 
relationship two reference points are required.  Since the actual voltage-temperature 
relationship is not quite linear, we will use at least three points:  the boiling point of water, the 
boiling point of nitrogen (

  

77.4°K = !195.8°C ), and the freezing point of water, all at 
atmospheric pressure.  Begin with the freezing point of water. 
 

Reference Point (K)  (oC)  
Triple Point of Hydrogen 13.81 -259.34  
Boiling Point of Hydrogen 20.28 -252.87  
Triple Point of Water 273.16 .01  
Boiling Point of Water 373.15 100.00 
Freezing Point of Zinc 692.73 419.58  
Freezing Point of Gold 1337.58 1064.43  

Table 1.1   A few of the International Practical Temperature Scale reference points 

 
• Prepare a reference temperature bath in which water and ice are well mixed.  Using a 

thermometer, estimate the uniformity of this bath once it has come to thermal 
equilibrium.  Since this will be the reference bath against which other temperatures 
will be measured, estimate the temperature uncertainty that this bath will introduce 
into your measurements. 

 
• Determine the voltage reading for boiling water.  Exercise care with the electric hot 

plate.  It can produce very nasty burns! 
 

• Also determine the voltage reading for the boiling point of nitrogen.  Use a small 
dewar of liquid nitrogen which you should observe to boil!  [Do not immerse the glass 
thermometers in liquid nitrogen.  It will ruin them.] 
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• Determine the voltage reading for ethanol-dry ice mixture at −72OC if available. 
(Don't even be tempted to drink the alcohol; it has been “denatured” to make you quite 
sick!) 

 

• A final calibration point can be determined at room temperature using a thermometer. 
 

• Explain in simple physical terms why the boiling point of a liquid depends on 
pressure. 

 
• Make a correction to your calibration points due to local atmospheric pressure.  You 

will find a barometer in the lab.  Reading the pressure with this device is fairly tricky 
since it incorporates a vernier scale for higher accuracy.  Ask your instructor for help.  
See Table 1.2  for temperature values of the boiling point of water as a function of 
ambient pressure.  How significant are these corrections? 

 
• Approximately what would the boiling point be at 10,000 feet?  (A useful approximate 

formula for the atmospheric pressure as a function of height is:   

  

P = 760.00
288.15

288.15 ! 0.0065H
" 

# 

$ 

% 

!5.255877

                                       (1.3) 

where P is measured in mm Hg and H is measured in meters.)  At high altitudes, 

  

H =
rZ

r + Z
                                                             (1.4) 

where r  is the mean radius of the Earth, 6370949 meters, and Z is the height above sea 
level. (From the CRC Handbook of Chemistry and Physics, page F-141).  Use Table 
1.3 to interpolate the boiling point of water at a given pressure. 

 

• Plot your data for thermocouple voltage vs. temperature using the spreadsheet 
program, Excel.  You may observe that your four calibration points (including the 
reference point) do not fall on a straight line.  This is not simply experimental error!  
In order to estimate temperatures other than your reference points, use the following 
interpolation formula: 

  

!V = a
1
T + a

2
T
2 where T is in Celsius.  Determine the 

coefficients a1 and a2  from your calibration data.  Excel has facilities for performing 
these calculations.  See Appendix 1.A for useful information about fitting smooth 
curves to data. 

 

• In order to test your calibration curve, plot it along with about 10 other points taken 
from the standard copper-constantan thermocouple values provided in Table 1.4.  
Also, on an expanded scale, plot the difference between the table values and your 
calibration curve. 

 

• What are the advantages and disadvantages of thermocouples for temperature 
measurements?  Compare with several other kinds of devices that you might find at 
home or in a lab. 
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1.3 The Ideal Gas Law 
 
Another simple temperature sensing device can be made with a sealed chamber of a gas at 
low enough density.  This is based on the ideal gas law, observed for most gases at densities 
at or below atmospheric density (see Equation 20-4, HR&W): 
 

pV = nRT                                                                   (1.5) 
 
This means that for a fixed volume, the pressure (which can be measured by purely 
mechanical means) is directly proportional to the temperature.  Of course, this is the absolute 
(Kelvin) scale of temperature.  In fact, it is sometimes referred to as the ideal gas temperature 
scale.  Thus, you should use the Kelvin scale exclusively for this portion of the lab (°K = °C + 
273.15°).  Ideal gas thermometers may be impractical for laboratory measurement of 
temperature.  However, this portion of the lab will not only serve to illustrate the properties of 
most gases at low density, but will also provide some familiarity with historical developments 
in thermodynamics. 
 

• Familiarize yourselves with the operation of the system of valves used to seal off the 
gauge, the gas reservoir, or to equalize the pressures of the gauge and reservoir.  Use 
the vacuum pump to evacuate the sealed gas bulb and gauge.  Calibrate the electronic 
pressure gauge using the mechanical one by gradually filling the bulb with air to 
atmospheric pressure. Record simultaneous readings of the electronic and mechanical 
gauges for at least five different pressure points. Plot readings of electronic gauge vs 
mechanical gauge. Make a straight line fit to the data. 

 

• To extend the calibration above atmospheric pressure, evacuate the gas reservoir and 
fill the bulb with nitrogen (or helium or argon) from one of the gas cylinders.  It is 
good practice to flush the tubing with a bit of gas to remove most of the air from the 
line.  Take mechanical and electronic gauge readings at several pressures up to about 
18 psi. This will permit raising the temperature of the reservoir without exceeding the 
range of the pressure gauge.  

 

• Estimate the gas volume of the metal reservoir from the dimensions shown in Figure 
1.3.  Also estimate the volume of the connecting copper tubing.  Comment on the 
effects of not immersing the entire assembly in a uniform temperature bath. 

 
• Immerse the metal reservoir in three reference temperature baths:  ice/water, liquid 

nitrogen, and boiling water. Immerse the cylinder in the boiling water slowly to reduce 
the temperature stress. Record the temperatures and gauge readings.  Repeat the ice 
water measurement.  This will serve as a check for possible gas leaks. 

 
• Repeat the steps above for all three gases: nitrogen, helium and argon. 

 
• Plot the pressure readings as a function of temperature (in °K) for the various gases on 

a single plot.  Using Excel fit each set of measurements to a straight line.   
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• According to Eq. 1.3, the pressure should be zero when the temperature is zero.  
Estimate “absolute zero” for each gas by extrapolating your linear plots to p = 0. 

 

• From Eq. 1.3, a linear dependence is expected.  Can you say anything about how ideal 
each of these three gases appears to be?  Look up the boiling point of these three gases 
and see if there is any correlation to the departure from ideal gas behavior. 

 

• The gas in the gauge and connecting tubing is not at the same temperature as the gas in 
the metal reservoir.  For this reason the measured pressure will deviate slightly from 
strict proportionality with the absolute temperature of the reservoir. Assume the 
connecting tubing remains at room temperature and derive an expression for the 
pressure that includes the different temperature of the connecting tubing.  (For this 
calculation, you will need an estimate of the volume of gas inside the tubing and 
gauge.  Samples of the tubing are available in the lab;  assume the gauge gas volume is 
zero.) What can you say about the pressures throughout the system?  What physical 
variable remains constant, independent of temperature, for the system?  Estimate how 
big a correction this would make to your data. 

 

• We have assumed the volume of the stainless steel cylinder is independent of 
temperature.   Look up the temperature coefficient of expansion of stainless steel and 
estimate how much the volume changes between liquid nitrogen and boiling water 
temperatures. 

 

• What pressure did you read on the mechanical gauge when it measured actual 
atmospheric pressure?  Based on your measurement of atmospheric pressure with the 
barometer, what pressure should it have read? 

 
The following conversion factors are useful to relate pressure measurements: 
 

  

1 Atmosphere =  14.69595 pounds/ sq. in.

                     = 760 mm Hg

                     = 29.92126 inches Hg

                     = 101.325 KiloPascals

                     =1.01325 Bar

 

 

1.4 Writing your summary in your notebook 
 
Writing a lab report is one of the most important parts of experimental work.  In fact, without 
a written record, experimental work has no value.  All that survives of the experiments of 
Galileo, or Leonardo da Vinci, or Isaac Newton, is their written accounts, mostly written in 
their own handwriting in their laboratory notebooks. 
 
Given their prime importance, no wonder lab notebooks intimidate many students. But don't 
panic.  We have  some tips to help you write up your work. 
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• Keep your laboratory notebook with you, and write in it often.  Every observation you 

make should be recorded.  I tell my research graduate students that if it isn't in the 
notebook, it didn't happen.  Get into the habit of writing down everything you will 
need to summarize your results or prepare for the quiz. 

 
• Follow the bullets.  The lab manual has tasks denoted in the text by bullets.  

Typically, each bullet should correspond to some entry in your notebook:  some data, 
or an observation, or a description. 

 
• Use tools during the laboratory.  Measurements and analysis often require tools 

(rulers, microscopes, spectroscopes, computers, voltmeters, etc.)  We have these on 
hand;  use them, and record your measurements by writing them down in your 
notebook or entering them onto your Excel spreadsheet, for later inclusion in your 
notebook. The spreadsheet tools are more useful if they are employed during the 
experiment, not afterwards.  If you have a laptop with Excel, you are welcome to use 
it in the laboratory. 

 
• Plot your data.  Remember, a data plot is worth a kiloword. (Or, one word equals one 

milliplot, or something like that.)  Plots made by hand are often more useful that plots 
made by Excel, because you can understand a trend right away, while you are 
collecting the data.  Often data collection takes some time, e.g. letting a thermometer 
come to equilibrium, so you have time to make a plot while the data are coming in. 

 
• Summarize your findings, right there in your notebook.  If you don't know how to do 

that, we recommend the following simple structure to follow:  Question, Method, 
Answer.  The first section describes the goal of the experiment.  The second section 
follows the bullet list recorded in your notebook, with at least one sentence or a brief 
paragraph for each bullet.  The third section summarizes your main findings in a brief 
statement. 
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  P          T       P         T         P        T  
(mm Hg)    (oC)   (mm Hg)    (oC)   (mm Hg)    (oC)  

700 97.714 735 99.067 770 100.366 
701 97.753 736 99.104 771 100.403 
702 97.792 737 99.142 772 100.439 
703 97.832 738 99.18 773 100.475 
704 97.871 739 99.218 774 100.511 
705 97.91 740 99.255 775 100.548 
706 97.949 741 99.293 776 100.584 
707 97.989 742 99.331 777 100.62 
708 98.028 743 99.368 778 100.656 
709 98.067 744 99.406 779 100.692 
710 98.106 745 99.443 780 100.728 
711 98.145 746 99.481 781 100.764 
712 98.184 747 99.518 782 100.8 
713 98.223 748 99.555 783 100.836 
714 98.261 749 99.592 784 100.872 
715 98.3 750 99.63 785 100.908 
716 98.339 751 99.667 786 100.944 
717 98.378 752 99.704 787 100.979 
718 98.416 753 99.741 788 101.015 
719 98.455 754 99.778 789 101.051 
720 98.493 755 99.815 790 101.087 
721 98.532 756 99.852 791 101.122 
722 98.57 757 99.889 792 101.158 
723 98.609 758 99.926 793 101.193 
724 98.647 759 99.963 795 101.264 
725 98.686 760 100 794 101.229 
726 98.724 761 100.037 796 101.3 
727 98.762 762 100.074 797 101.335 
728 98.8 763 100.11 798 101.37 
729 98.838 764 100.147 799 101.406 
730 98.877 765 100.184 800 101.441 
731 98.915 766 100.22         
732 98.953 767 100.257         
733 98.991 768 100.293         
734 99.029 769 100.33      

 
Table 1.2   Boiling point of water as a function of pressure (from the CRC Handbook of Chemistry and Physics, 
67th edition, page D-183) 
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T P T P T P T P 
(oC) (mm Hg) (oC) (mm Hg) (oC) (mm Hg) (oC) (mm Hg) 

0 4.579 27 26.739 53 107.2 79 341 
1 4.926 28 28.349 54 112.51 80 355.1 
2 5.294 29 30.043 55 118.04 81 369.7 
3 5.685 30 31.824 56 123.8 82 384.9 
4 6.101 31 33.695 57 129.82 83 400.6 
5 6.543 32 35.663 58 136.08 84 416.8 
6 7.013 33 37.729 59 142.6 85 433.6 
7 7.513 34 39.898 60 149.38 86 450.9 
8 8.045 35 42.175 61 156.43 87 468.7 
9 8.609 36 44.563 62 163.77 88 487.1 

10 9.209 37 47.067 63 171.38 89 506.1 
11 9.844 38 49.692 64 179.31 90 525.76 
12 10.518 39 52.442 65 187.54 91 546.05 
13 11.231 40 55.324 66 196.09 92 566.99 
14 11.987 41 58.34 67 204.96 93 588.6 
15 12.788 42 61.5 68 214.17 94 610.9 
16 13.634 43 64.8 69 223.73 95 633.9 
17 14.53 44 68.26 70 233.7 96 657.62 
18 15.477 45 71.88 71 243.9 97 682.07 
19 16.477 46 75.65 72 254.6 98 707.27 
20 17.535 47 79.6 73 265.7 99 733.24 
21 18.65 48 83.71 74 277.2 100 760 
22 19.827 49 88.02 75 289.1 101 787.57 
23 21.068 50 92.51 76 301.4          
24 22.377 51 97.2 77 314.1          
25 23.756 52 102.09 78 327.3          
26 25.209                                              

 
Table 1.3   Vapor pressure of water as a function of temperature (from the CRC Handbook of Chemistry and 
Physics, 67th edition, pages D-189-D-190). 
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EMF  values are in millivolts;  reference junctions at 0o C;  temperatures are in °C.  Roeser 
and Wensel, National Bureau of Standards   
 

T     EMF     T     EMF     T   EMF 
(C)     (mV)      (C)      (mV)     (C)   (mV) 
-200 -5.54 0 0 200 9.29 
-190 -5.38 10 0.39 210 9.82 
-180 -5.2 20 0.79 220 10.36 
-170 -5.02 30 1.19 230 10.91 
-160 -4.82 40 1.61 240 11.46 
-150 -4.6 50 2.03 250 12.01 
-140 -4.38 60 2.47 260 12.57 
-130 -4.14 70 2.91 270 13.14 
-120 -3.89 80 3.36 280 13.71 
-110 -3.62 90 3.81 290 14.28 
-100 -3.35 100 4.28 300 14.86 

-90 -3.06 110 4.75 310 15.44 
-80 -2.77 120 5.23 320 16.03 
-70 -2.46 130 5.71 330 16.62 
-60 -2.14 140 6.2 340 17.22 
-50 -1.81 150 6.7 350 17.82 
-40 -1.47 160 7.21 360 18.42 
-30 -1.11 170 7.72 370 19.03 
-20 -0.75 180 8.23 380 19.64 
-10 -0.38 190 8.76 390 20.25 

                  400 20.87 
 
Table 1.4   Temperature-EMF values for copper-constantan thermocouples (from the CRC Handbook of 
Chemistry and Physics, 67th edition, page E-111). 
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Appendix 1.A   Fitting Curves to Data - the Least Square Method 
 
 
Often in physics you have a set of n data points, (xi, yi) for which you would like to find the 
“best fit” curve that passes as close as possible to all these values.  We need to assume the 
mathematical form this function might have.  As an explicit example, we might take the 
quadratic form: 
 

  

y(x) = A + Bx + Cx
2                                                    (1.6) 

 
The task is to find the values for the parameters A, B and C that makes the residuals, 

iii yxy != )(" , as small as possible.  The simplest procedure is to add up all the squared 
residuals: 
 

  

! = " i
2

= (y(xi) # yi)
2$$                                                     (1.7) 

 
This sum is always positive but can be minimized by imposing the following conditions: 
 

  

!"

!A
=
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= 0                                                         (1.8) 

 
We have thus found three simultaneous equations that must be satisfied: 
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2
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                                                  (1.9) 

 
These three equations can be rewritten in matrix form as: 
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                                              (1.10) 

Finding the best fit parameters, A, B and C, requires solving these linear equations, a task for 
which computers are remarkably adept. 
 
This example can be generalized in two distinct ways.  First of all, the equations derived 
above gave equal weight to each pair of data points.  This is usually not quite correct since 
some data points have larger errors and should affect the computed parameters less severely.  
The   prescription is to introduce a weight, wi, for each observation with: 
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σI  is the estimated standard deviation for the individual measurement. The equivalent matrix 
equation for fitting quadratic curves is: 
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                                    (1.12) 

 
These equations could be extended to higher order polynomials simply by increasing the 
number of rows and columns with the matrix elements formed from successively higher 
powers of xi.  Moreover, the model fit function need not even be a polynomial.  For example, 
assume: 
 

  

y(x) = Af (x) + Bg(x) + Ch(x)                                                              (1.13) 
 
As long as f(x), g(x) and h(x) are unambiguous functions of x, the parameters A, B and C can 
be computed from: 
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    (1.14) 

 
Note that in all these examples, the least squares matrix is symmetric.  This is a consequence 
of the commutivity of differentiation: 
 

  

!
2
"

!P!Q
=

!
2
"

!Q!P
                                                                    (1.15) 

 
where P and Q are any two parameters characterizing the model function, y(x).  A powerful 
numerical method for solving such symmetric linear systems is called the Cholesky 
decomposition.  The algorithm for this procedure is extremely robust in maintaining high 
accuracy in spite of inevitable rounding errors when performing arithmetic operations on 
floating point numbers.  It is also fast.  (For details, see  Numerical Recipes in C, The Art of 
Scientific Computing, 2nd edition, W.H. Press, S.A.  Teukolsky, W.T.  Vetterling and B.P.  
Flannery, Cambridge Press, 1992.). 
 
The linear least squares method described above solves a large fraction of the spectrum of 
problems encountered in physics but not all.  Some problems can be linearized by a trivial 
transformation: 

  

y(x) = Ae
!Bx

" y '(x) = A'+B' x                                                     (1.16) 
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where: 
 

  

y'= log(y(x))

A'= log(A)

B'= !B

 

 
One is not always so fortunate.  A common model function is the Gaussian curve: 

  

y(x) = Ae
!B (x!C )

2

                                                (1.17) 
 
The technique shown above won't work here because the C parameter appears in an 
intrinsically nonlinear form.  For such problems, the solution is trial-and-error guided by 
intelligent search strategies. Unfortunately, the minimization condition,  

  

(!" /!A) = (!" /!B) = (!" /!C) = 0 ,  is generally not unique and there are no general methods 
for guaranteeing when you have found the global minimum rather than merely a local one. 
 
 
Appendix 1.B Hints for using the Excel spreadsheet program 
  
Copying cells 
 
To cut, type Ctrl-X. 
To copy, type Ctrl-C. 
To paste, type Ctrl-V. 
 
 Plotting data and curves 
 
Make sure you enter your data points as numbers, rather than text. 
 
Use the Chart Wizard facility to initialize a new graph.  It can be accessed via the “bookcase” 
icon on the top row of the tool bar, near the right-hand end.  For  Chart Type, choose  XY 
(Scatter).  You now have a choice of sub-types.  The default of unconnected data points is 
usually the appropriate one for displaying original data.  Click  Next.  You now need to 
indicate the  Data range.  Use the mouse to select the values for the vertical axis, add a 
comma (,) and then select the values for the horizontal axis.  If your data is arranged in 
columns, click the Columns box.  Click Next to get to the Data Labels window and edit 
according to your taste.  For our purposes it is best to choose Major and Minor gridlines on 
both axes to allow the x,y values to be read more easily.  The size of the graphs should reflect 
the accuracy of your data.   Don’t use a postage-stamp one if you have 1% data.  The next 
window, Chart Location, asks for chart placement.  If you want the graph to stand alone, click 
the As New Sheet option, then Finish. The choice of axes is rather idiosyncratic: Excel makes 
the selection based on the position of the data within the spreadsheet. 
 
To add a second set of data, right-click anywhere in the margins of the graph to get a menu 
containing Source Data....  Click this item and in the new window, click  Add on the left-hand 
side and then fill in the  X Values: and  Y Values boxes appropriately.  If this second set of 
data defines a smooth curve, it would be better to show this as a continuous line instead of 
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individual points.  To do this, right-click any of the data points for the new data and then 
select Chart Type ... from the menu.  Select the appropriate sub-type and you're done. 
 
To add error bars to data, right-click any of the data points to get the Format Data Series... 
option.  You can then select the  Error Bars or  X Error Bars to set the appropriate error 
values. 
 
Fitting smooth curves to data 
 
The LINEST function will compute the least-squares coefficients for a polynomial fit to data 
of the form: 

  

y = anx
n

+ an!1x
n!1

+ ...+ a
1
x + a

0
 

 
To execute this function, you need to arrange a column (or row) of y-values and sequential 
columns (or rows) of x-values raised to progressively higher powers, i.e. 

  

(x,x
2
,x

3
,...,x

n
).  

LINEST returns n+1 coefficients plus other statistical stuff, depending on your taste.  For this 
reason, you need to select an appropriate range of cells to contain all these values before 
entering the actual formula. 
 
The syntax for using LINEST is: 
 

= LINEST (y-range vector, x-range array, const, stats) 
 [For example,  =LINEST(A2:A5,B2:B5,1,1)] 
 
The x-range array must include all required powers of the dependent variable.  Const is a 
logic value used to indicate whether the a0 term should be included in the fit or forced to zero.  
Stats should be set to TRUE (1) if the statistical parameters are needed in addition to the 
fitting coefficients.  Since there is no provision for specifying measurement errors, the 
statistics are fairly worthless.  The appropriate cells for the y-range and x-range can be 
selected by dragging over them with the mouse. 
 
Next, select a block of cells for the coefficients and errors. Then make this an array formula 
by typing Ctrl-Shift-Enter to store in the allocated cells.  Note that the return parameters are in 
the inverse order of the x-range array columns (or rows). 
 
For most of the graphs in the lab, you can also use the “Add Trendline”. 
 
Obtaining random variables 
 
If is often convenient to have a sequence of random values to help simulate a real physical 
process.  Excel provides a wide variety of statistical distributions using the  Analysis ToolPak.  
To obtain this facility, look in the  Tools menu for  Data Analysis....  If it isn't, there click on  
Add Ins..., click the  Analysis ToolPak box and then  OK.  From the  Data Analysis... window, 
select  Random Number Generation and then choose whatever options you prefer. 
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Experiment 1 - Measurement of Temperature and the Ideal Gas Law 

 
Apparatus List 

 
Hewlett-Packard model 34401A and 974A multimeters 
Copper and constantan thermocouple wire 
Hot plate 
Large stainless steel beaker 
Two small thermos flasks 
Plastic insulated bucket 
Glass thermometer 
Banana plug terminal adapter for H-P multimeter 
Soldering iron and solder 
Mercury barometer 
Gas reservoir with its attached electronic pressure gauge 
Mechanical pressure gauge 
Gloves for handling LN2 flask 
Ice, liquid nitrogen 
Wire stripper 
Vacuum pumps and associated plumbing 
N2, He and Ar gases 
Dry ice (solid CO2) (optional) 
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