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The general behavior of the retarding potential curves for the photoelectric effect 

makes precision measurements of Planck’s constant difficult. The problem is best 
illustrated by a typical graph of the photocurrent vs. retarding voltage as shown in Figure 
1 below. 
 

 
 
 
 
 
 
 
The information that we need to find is the applied voltage that causes the photocurrent to 
go to zero. Unfortunately, the slope of the curve decreases drastically in this region, 
making the intercept difficult to resolve. This is yet more complicated by a reverse 
current from electrons ejected by stray light hitting the phototube collector electrode as 
well as the uncertainty due to the poorly constrained functional behavior of the 
photoelectron momentum spectrum. The recommendations in this note do not solve these 
problems completely but they minimize errors due to ambiguous data reduction 
procedures. 
 
 The major task is to find the point of maximum curvature in the photocurrent 
curve, shown as the large bright dot in Figure 1. In principle, this might be done by 
computing two stages of finite differences to estimate the second derivative. In practice, 
even for good data, this is a very noisy process that leads to poorly reproducible results. 

Figure 1. The photocurrent vs. retarding voltage response to green (532 
nm) light. The large green dot designates the point of maximum 
curvature. 



The alternative is to smooth the data by fitting to simple analytic curves which 
emphasizes the global behavior of the data, smoothing out local noise. The curvature of 
the fitted curve can then be extracted by the usual methods of calculus. For the problem 
at hand, the following functional form is suggested: 
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The coefficients, {aj}, should be computed over the entire data set using the linear least 
squares procedure outlined in my lecture notes. Since the variance of the data is not well-
known, one should make the assumption that it is uniform over all data. The curvature of 
the photocurrent curve is then predicted by: 
 

d2y/dx2 = 2a2
 + 6a3·x + 12a4·x2 + 20a5·x3 

 
The curvature maximum can be found by finding the value of x that makes d3y/dx3 equal 
to zero. Note that this later equation is quadratic so that a closed form solution exists. 
Thus, the location of the maximum curvature can be computed as depicted in Figure 1. 
 
 If the position of the curvature maximum alone is used as a proxy for the 
photocurrent cutoff voltage, a significant systematic error will be incurred because curves 
taken with different wavelengths of light will show sharper or broader curvatures and 
thus different increments in voltage before all the electrons are fully repelled. A 
procedure for dealing with this is depicted in Figure 2 below. 

 
 
 
 
 
 
 

Figure 2. Illustrating the use of the first and second derivatives to 
estimate the zero-crossing point for the S-shaped curve (blue). The 
solid red line is a quadratic curve that matches the S-curve at the point 
of maximum curvature. The end point depicted is sensitive to both the 
position of the maximum point of curvature and the magnitude. 



To compensate for different values of the maximum curvature, we ask the following 
question: how far do we have to move to the right before the slope of the curve would be 
zero? That offset is given by: 
 

δx = - dy/dx / d2y/dx2 
 
The addition of δx to the point of maximum curvature thus gives a reasonably unbiased 
estimate of the photocurrent cutoff voltage. Without a physically motivated model of the 
photoelectron spectrum, this is probably about as well as one can do. 
 
 The statistical error of this procedure can be estimated by the techniques 
discussed in class although the expressions are messy enough that resort to Mathematica 
or a similar symbolic algebra program is almost essential. The variance of the data can be 
crudely estimated by scaling the c2 value to the number of degrees of freedom given by 
the number of data points and the number of parameter constraints. The dependence of 
the cutoff voltage is quite complicated so it’s best to import the fitted parameter values to 
Mathematica and let it find the values for the appropriate derivatives. These can be 
exported back to Excel or whatever package you are using to compute the cutoff 
variance. It is also possible to investigate whether the choice of analytic functions affects 
your result. As long as there are no large systematic deviations between data and fitted 
curve, this is not likely to be a problem. 

 
 
 Figure 3. The second derivative of the curve shown in Figure 2. 

Note the peak near x = 1.0 which corresponds to the point of 
maximum curvature. 


