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Figure 4. Six converter plates available for this experiment, From left to right,
carbon, aluminum, copper, tin, tungsten & lead. 

 
The main focus of this experiment is the measurement of the pair production yield as a 

function of the atomic number of the target material. Six converter plates are provided with the 
physical characteristics listed in Table I below. 
 

    Z  A  X 
(cm) 

Y 
(cm) 

Z 
(cm) 

M 
(g) 

 

  C  6  12.0107 7.620 8.635 2.547 294.0   

  Al  13  26.981538 7.605 8.637 1.750 311.3   

  Cu  29  63.546 7.623 8.638 0.537 315.7   

  Sn  50  118.71 7.785 8.730 0.730 362.4   

  W  74  183.84 7.634 8.652 0.275 307.7   

  Pb  82  207.2 7.635 8.640 0.394 291.6   

Table I. Physical dimensions of pair production converter plates. 

 
To compare the relative effects of different atomic number, you will need to divide the number 
of detected pair events by the number of target nuclei per unit area. From the numbers provided 
above, that can be determined from the formula: 
 

# nuclei/area   AN M

A X Y



 

    

where NA is Avogadro’s Number. 
 

The key component of this experiment is the high purity Ge solid state detector which is 
efficient for detecting gamma-rays while providing excellent energy resolution. The basic 
geometry of the active volume is a cylinder 52.7 mm in diameter by 54.1 mm long. This device 
should be operated with a positive potential of 3000 v and must be maintained at cryogenic 
temperatures with liquid nitrogen. Make sure the detector is adequately cooled before 
switching on the detector bias voltage. A diagram and photograph of the detector and its 
housing are shown in Figure 5 below. 
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Figure 5a. Cross-section of the high
purity Ge detector. The germanium
is shown in cyan with electrodes
drawn in magenta. The green lines
indicate the internal liquid nitrogen 
shield and the outer vacuum
housing is drawn in red. 

 Figure 5b.Photograph of the high purity Ge detector encased 
in its vacuum housing and surrounded by lead bricks and
bracket to support radioactive sources. 

 
The Ge detector is connected by a coaxial cable to the rear panel of the NIM HV bias 

supply. The detector analog signal output is connected via coax to the input of a linear amplifier 
module as shown in Figure 6. The output of this unit is, in turn, fed to an MCA (multi-channel 
analyzer) which is read out by the desktop PC nearby. The only electronic controls that you 
should possibly change are the linear amplifier gains. For this experiment, the COARSE and 
FINE gains should be adjusted to put the 1460.830 KeV γ-ray that follows the 40K → 40Ar 
electron capture into an MCA channel close to 2297, assuming a total of 4096 (see Figure 8). 
The 40K source is a small bottle of “NoSalt” salt which was purchased at Kroger’s. 

The Amptek MCA8000A ‘POCKET MCA’ is accessed via the desktop computer 
standing nearby. Log on to the PC using the username, umroot\phys-advlab2. The password is 
prominently posted in the classroom. The data acquisition program for the MCA can be initiated 
by double clicking on the desktop icon shown below: 

ADMCA 
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Figure 9. EXCEL spreadsheet format for pair production data. Store MCA data starting on line
10. Text identification should be on line 6 and integration time on line 8. 
 

Naively one would expect that each individual gamma-ray line would be a symmetric 
Gaussian shape. In fact, probably due to inefficiencies in charge collection in the Ge detector, the 
waveform is decidedly skewed with a much longer tail on the low energy side of the peak. A 
mathematical model for this behavior is shown graphically in Figure 10. The curve is the 
concatenation of a simple exponential on the left (in red) and a Gaussian on the right (in blue). 
The two curves are joined slightly to the left of the maximum value with continuous values and 
first derivatives at the breakpoint, xb = - σ2/λ. This model is used in the pair_prod_peaks 
program. 
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The setup for measuring e+e– pair production is shown in Figures 12a & b. The critical 
trick of this procedure is to make sure that direct radiation from the Ra source never directly 
illuminates the Ge detector. The tungsten brick (with the white plastic handle) is extremely dense 
(Don’t Drop!!!) and is quite effective as a shield. For this reason, keep the source at the back 
edge of the W block, as shown. The various converter plates should be placed on the inclined 
support directly above the Ge detector. Gamma-rays with energies above the 2mec

2 threshold can 
convert to positrons and electrons and the positron will quickly slow down, capture an electron 
and annihilate into two 511 KeV γ-rays. This effective fluorescence is the signature that you will 
detect in the spectra taken with the six elemental converter plates. The conversion efficiency of 
this process is low so make sure you integrate for a long enough time to obtain sufficient 
statistics. Also make sure to take a background run with no absorber! 

 
 

Fig. 11a. Unattenuated measurement of
the 226Ra spectrum. 

 Fig. 11b Attenuated measurement of 
the 226Ra spectrum with a Cu absorber.
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Fig 12a. Side view of the source,
converter plate and detector
housing. 

 Fig 12b. Close-up view of the 226Ra source and Cu converter 
plate. 

 
Data Analysis 

 
 The first task for data analysis is to estimate the photon absorption cross sections for 
carbon and lead and compare these measurements with values obtained from the NIST Web site, 
http://www.nist.gov/pml/data/xcom/index.cfm. Accessing this URL will get you to the NIST 
XCOM: Photon Cross Sections Database. If you need instructions for use, go to option 4: How to 
Run the XCOM Program. For the less timid, proceed directly by clicking Database Search Form 
on the right-hand side of the screen, then click Submit Information. Make sure to select the “All 
quantities in barns/atom” option under Options for output units:. You will be interested in the 
spectral range from 290 KeV to 2500 KeV. Select the element of choice and click the second 
Submit Information button. From your data, you should be able to measure the count attenuation 
for at least 20 different spectral lines. To obtain the atomic cross sections, divide log(n1/n2) by 
the number of nuclei per unit area. Compare with the predictions obtained from the NIST 
facility. Comment on the cross section behavior in the energy range of this experiment and any 
qualitative differences between carbon and lead. 
 The central focus of this experiment is the measurement of the relative yield of positrons 
as a function of the converter element and its thickness. Determine the relative yield per number 
of nuclei per unit area and make a log-log plot of the results as a function of target atomic 
number, Z. Fit this data to the functional form shown below to find the best fit values for C and 
n. (Use Solver in Excel or an equivalent non-linear fitting algorithm.) 
 

1/3+e e

183 2
log

7Z
C Z n        

ø            
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How does the value of n compare to the expectation based on quantum electrodynamics? 
 

c 299792458 m/s 
e 1.602176487 1910  C 

0  74 10   

0  2 1
0( )c   

em  319.10938215 10  kg 510.999 keV 

0r  2 2
0/ (4 )ee m c  

AN  23 16.02214179 10  mol  

Table II.  Useful constants and parameters. 

 
 

Isotope  Eγ  (KeV)  Rel Intensity 
222Rn  186.211   
214Bi  53.228  1.2 
214Bi 241.997  7.43 
214Bi 258.87  0.524 
214Bi 274.8  0.474 
214Bi 295.224  19.3 
214Bi 351.932  37.6 
214Bi 487.09  0.422 
214Bi 785.96  1.07 
214Bi 839.04  0.587 
214Po  609.312  46.1 
214Po 665.453  1.46 
214Po 703.11  0.472 
214Po 768.356  4.94 
214Po 806.174  1.22 
214Po 934.061  3.03 
214Po 1120.287  15.1 
214Po 1155.19  1.63 
214Po 1207.68  0.451 
214Po 1238.11  5.79 
214Po 1280.96  1.43 
214Po 1377.669  4 
214Po 1385.31  0.757 
214Po 1401.5  1.27 
214Po 1407.98  2.15 
214Po 1509.228  2.11 
214Po  1583.22  0.69 
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214Po 1661.28  1.15 
214Po 1729.595  2.92 
214Po 1764.494  15.4 
214Po 1847.42  2.11 
214Po 2118.55  1.14 
214Po 2204.21  5.08 
214Po 2293.4  0.305 
214Po 2447.86  1.57 

Pb Kα  74.9694   

Pb Kβ  84.936   

me  510.9989   
22Na  1274.53   
54Mn  834.848   
57Co  122.0607   
57Co 136.4736   
57Co 692.41   
60Co  1173.237   
60Co  1332.501   
109Cd  88.0336   
133Ba  53.1625   
133Ba 80.9971   
133Ba 160.6109   
133Ba 223.2373   
133Ba 276.3997   
133Ba 302.851   
133Ba 356.0134   
133Ba 383.848   
137Cs  661.657   
40K  1460.83   
133Ba Σ  437.0105   

Table  III. Gamma‐ray  energies of  various  isotopes.
(This  data  is  also  available  in  a  file,
pair_prod_lines.xlsx.) 

 
Appendix A 

 
The IDL gamma_peaks analysis code is stored in the rtorres1 user account in the 

directory, C:\Users\rtorres1\Documents\e+e- progs. This keeps the code protected from random 
modifications. Two source code files are required, gamma_peaks.pro and gamma_shape.pro. 
The code can be compiled and saved to the executable file, gamma_peaks.sav, using the 
procedures outlined in IDL_instr.pdf and IDL_instrux.txt. Access to the SAV file must be 
permitted for student use, ie. phys-advlab1 and phys-advlab2. 
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