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The Nuclear Magnetic Resonance (NMR) experiment illustrates some important 
principles of spectroscopy that can be applied to a variety of systems operating at much 
higher frequencies. NMR has also become an important medical tool for non-invasive 
imaging of the human body. To avoid the stigma and fear of all things nuclear, this 
technique has been relabeled “Magnetic Resonance Imaging” or MRI. The apparatus for 
this experiment, manufactured by TeachSpin, has the controls and signal outputs that 
allow the complete exploration of the nuclear resonance phenomenon. The following 
guidelines are meant to help you get a basic quantitative understanding of NMR. By 
executing them, step by step, you should be able to get a good idea of how all this works. 
 

1. The magnetic resonance phenomenon can be understood by analogy to classical 
mechanical systems as described in the TeachSpin manual, particularly pages 2-
11. Since magnetic resonance is more deeply represented by quantum mechanics, 
it is suggested that you also read H. Haken & H. C. Wolf, The Physics of Atoms 
and Quanta, sections 20.6, 20.7, then 14.4 and 14.5. 

 
2. The next step is to become familiar with the equipment that will be used. There 

are basically three components: (1) the actual NMR spectrometer which is 
enclosed in a metal box housing a modest permanent magnet assembly and 
crossed transmitter and receiver coils that surround the sample volume, (2) the 
control and detection electronics modularly housed in a common power supply 
case, and (3) an Agilent 54642A 500 MHz oscilloscope for monitoring the 
various control and detection signals. These are illustrated in the TeachSpin 
manual as Figure 1.2 (page 15), Figure 11.2 (page 24) and Figure 1.3 (page 29). 
(Consistency of document organization is apparently not a high priority.) Follow 
the TeachSpin manual, starting at page 26 to gain familiarity with the various 
controls. Ignore section A.3 (Multiple Pulse Sequence) but continue through page 
28. Note that at the present time, the tuning capacitor on the 15 MHz receiver 
module is broken so leave it alone. 

 
3. The Larmor precession frequency is given by the equation, ν0 = γpB0/2π, where 

γp is the proton gyromagnetic ratio and B0 is the static field in the magnet gap, 
about 0.36 Tesla (3600 Gauss) for this particular gadget. (A table of useful 
constants is included at the end of this document.) You now need to find out the 
intensity of the pulsed RF field, B1, that induces the spin transitions. There are 
two sample probes with somewhat similar geometries (see page 25b). For the 
purpose at hand, select the Pickup Probe. Insert the coil in the sample volume and 
connect to the oscilloscope. With the RF Power modulated by an A Pulse, you can 
expect a fairly hefty signal on the scope. Rotate the probe within the sample 
volume to maximize the signal amplitude. Note the orientation of the coil and 
compare with Figure 11.2 to check your understanding of the NMR geometry. 
TeachSpin claims that the pickup probe coil has a diameter of 6 mm. Use that 



information to compute the amplitude of the pulsed RF field (a Physics 240 
problem). That is not quite the same as B1. Remember that the oscillatory field 
that drives the spin transitions is one of the two rotating components that sum to 
the RF field that is confined along just one axis of the spectrometer. Thus, the 
amplitude of B1 is exactly half of the value just calculated. This allows you to 
compute the durations of the pulses required to rotate the magnetization through 
π/2, 3π/2, or 5π/2 radians using the relation, θ = γpB1t. 

 
4. Follow the instructions in the TeachSpin manual on pages 29 and 30 to observe 

the Free Induction Decay (FID). Use the estimated value for B0 given above as an 
initial starting point for finding the natural precession frequency, ν0. This can be 
determined relatively accurately by minimizing the beat frequency observed from 
the Mixer Out port. 

 
5. Tweak the A-WIDTH control knob to find the successive maxima of the Free 

Induction Decay signal (from the DETECTOR OUT port) corresponding to the 
tπ/2, t3π/2, t5π/2 pulses. For each value, you will need to patch to the A+B OUT port 
to measure the corresponding time with the oscilloscope. (Note that the scope has 
a cursor that will enable rather accurate time measurements.) Compare with the 
calculations you performed in section 4 above. 

 
6. Make sure that the Mixer Out signal is really the beat frequency between the 

natural precession frequency, ν0, and the applied drive frequency, ν1. Vary ν1 
starting from near the resonance frequency, ν0, and compare the Mixer Out signal 
frequency with �ν0 - ν1�. 

 
7. The dynamics of the rotation of the bulk magnetization can be understood in 

terms of a simple mechanical model, the harmonically forced motion of a simple 
oscillator. (Think of a playground swing pushed by a klutzy parent.) In the 
situation at hand, the magnetization is driven by a sinusoidal force of constant 
amplitude of fixed duration. The number of cycles is simply given by ν1t. If 
�ν1t - ν0t� = n, n ≠ 0, the total torque imparted to the system will be zero. The 
algebra for this is worked out in detail in the appendix to this note. For A pulse 
lengths corresponding to tπ/2 and t5π/2, vary ν1 to find several successive minima in 
the FID amplitudes. Compare to the predictions provided by the model described 
above. 

 
8. Find the magnetic field “sweet spot” by cranking the sample holder along the two 

axes perpendicular to the static field direction. The best position will be found 
when the apparent FID signal has the longest decay time. (Hint: it is not at the 
coordinates specified by 0, 0.) Map the magnetic field using the mineral oil 
sample and twiddling ν1 to minimize the beat frequency and thus determine ν0. 

 
9. Measure the spin-lattice relaxation time, T1, using the π pulse – delay – π/2 pulse 

sequence as described on page 33 (Two Pulse – Zero Crossing). Note that after 
the π pulse, the system will approach thermodynamic equilibrium according to 



the formula, Mz(t) = M0 (1 – 2 exp(-t/T1)). The factor of two occurs because the 
magnetization must decay from -M0 back to +M0. Thus, you should find a value 
for t, τ0, where the FID signal goes to zero. τ0 is related to T1 in a fairly obvious 
way. 

 
10. Measure the spin-spin relaxation time,T2, using the π/2 pulse – delay - π pulse – 

delay sequence as described on page 34. Verify that this method overcomes 
problems with magnetic field non-uniformities by also trying this out with the 
sample intentionally moved to a relatively rapidly varying field region. In fact, 
you may find that this will be the best way to deal with samples with small values 
of T2. 

 
11. In order to see how NMR might be useful in a medical context, find some 

varieties of biological material and compare T1, T2. I would suggest lunch meat 
and fingernail clippings but you’re free to make your own selections. Just make 
sure no one would be tempted to eat the samples. 

 
Experimental Pitfalls: 
 

1. Make sure the RF power cable with the TNC connector is properly connected to 
the RF OUT jack on the 15 MHz OSC/AMP/MIXER module before turning on any 
electrical power. 

 
2. The REPETITION TIME controls must be set so that the sample can completely 

return to thermodynamic equilibrium before the next series of pulses are 
generated. 

 
3. Make sure that nothing gets accidentally spilled or dropped into the spectrometer 

housing. Be especially careful to avoid putting any magnetic (ie. steel) objects in 
the vicinity of the spectrometer box. 



Appendix 
 

Forced Harmonic Oscillation 
 
 

free harmonic oscillator: ( ) ( ) 0mx t kx t+ =&&    
 
forced harmonic oscillator: ( ) ( ) ( )extmx t kx t F t+ =&&   
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For general forcing functions: 
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From the formula given above, the amplitude of oscillation following a 5π/2 pulse was 
computed and graphed as shown on the next page as a function of Δν = ν1 – ν0. 



 



 


