
Nuclear Magnetic Resonance:
An Introduction

Nuclear magnetic resonance or NMR is one of the most widely used discov-
eries of Modern Physics. NMR is based on the bulk magnetic properties
of materials made up of certain isotopes, most notably, protons (11H), but
encompassing a wide variety of species including 13C, 19F, and 29Si. NMR
is used to measure magnetic fields with exquisite precision. NMR is used
in chemical analysis, oil exploration, and, of course, is the basis of MRI —
magnetic resonance imaging.

Nuclear magnetic resonance is not just a bulk effect. The dynamics of
a nuclear spin subjected to static and time dependent magnetic fields are
described by quantum mechanics, and for the case of a spin 1/2 nucleus
such as 1

1H, can be described by classical electrodynamics. Both of these
descriptions are useful and important for a full understanding of NMR. Bulk
NMR effects are most apparent in the classical context of magnetic materials.

There are currently two NMR experiments available in this lab. Pulsed
NMR, demonstrates the dynamics of nuclear spins and is the basis of many
modern NMR based instruments. Continuous wave (CW) NMR is based on
the bulk features of a sample of nuclear spins. An NMR imaging experiment
is currently under development. This chapter serves as the introduction to
all of these experiments.

Reading

Haken and Wolf, Chapter 20

Principles of Magnetic Resonance, C.P. Slichter, Springer Chapters 1-2

1



2

Spin dynamics

Any charged or composite neutral object with non-zero angular momentum
has a magnetic moment.1 For example the electron, a particle with charge
q = −e and spin angular momentum h̄/2, that is the electron has spin
S = 1/2. The electron magnetic moment is given by

�µe = gµB

�S

S
. (12.1)

where µB = eh̄/2mc is the Bohr magneton. For the electron g ≈ 2.
A nucleus is not an elementary particle in the sense that the electron is

considered a point particle. A nucleus is composite, made up of constituent
neutrons and protons, both of which are also composite – they are made
up of quarks. The magnetic moment of a nucleus arises due to the magnetic
moments of all the constituents AND the motions of the charged constituents
(protons). For a nucleus labeled by A, with angular momentum �I the nuclear
magnetic moment is

�µA = gAµN

�I

I
. (12.2)

Here µN = 5 × 10−27 J/T is the nuclear magneton. The value of I is deter-
mined in experiments that count the effective number of magnetic substates
(labeled by mI) of an atomic or nuclear species, for example the Zeeman
Experiment. Since mI can take on the values

mI = −I,−I + 1, ...I − 1, I (12.3)

there are 2I + 1 magnetic substates and possible values of mI . The mag-
netic moment and therefore g-factor is determined in a magnetic resonance
experiment.

Classical electrodynamics of a magnetic moment

A nuclear magnetic moment in a magnetic field, which may be static or time

dependent, is subject to a torque �τ = h̄d�I
dt

�τ = h̄
d�I

dt
= �µ × �B (12.4)

1Generally the total angular momentum of a system is denoted �J . Special symbols are
reserved for the electron (�S) and the nucleus of an atom (�I).
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and
d�µ

dt
= γ�µ × �B (12.5)

where γ = gAµN/Ih̄. For example, consider the case of a static magnetic
field B0 along the z–axis. Then this equation becomes

dµx

dt
= γ(µyB0)

dµy

dt
= −γ(µxB0)

dµz

dt
= 0

Taking the time derivative of each equation and substituting, you’ll find

d2µx

dt2
= −(γB0)

2µx

d2µy

dt2
= −(γB0)

2µy

d

dt
(µ2

x + µ2
y) = 0

The solution, for µx(0) = µT , is

µx(t) = µT cosω0t (12.6)

µy(t) = −µT sinω0t (12.7)

µz(t) = const. (12.8)

This describes the precession of the magnetic moment about the z–axis along
a cone, with constant µz. The angular frequency ω0 = γB0 is called the
Larmor frequency.

The Rotating Frame

A lot of what goes on in NMR can be best understood by transforming the
situation to a reference frame that is rotating around the z–axis so that
ẑR = ẑ, and

x̂ = x̂R cos Ωt − ŷR sin Ωt

ŷ = x̂R sin Ωt + ŷR cos Ωt
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To begin with, consider such a frame rotating around the z-axis a the same
angular frequency as the precessing magnetic moment µ so that Ω = ω0. In
this frame, µR is stationary – it’s as if �µ × �BR = 0! In fact we will show
this mathematically. In particular, we will see that the physics of µR can be
found by setting BR

z = B0 − Ω/γ.

Also consider an oscillating magnetic field, which in the lab frame is
given by �B(t) = B1 cos ωtx̂ = B1/2(eiωt + e−iωt)φ̂, where φ is the azimuth
angle. The oscillating field is therefore equivalent to two rotating fields, one
moving with the rotating frame and one rotating in the opposite direction
with relative angular frequency −2ω. We generally ignore the effects of this
“counter rotating” component, which gives rise to small effects called Bloch-
Siegert effects. The field B(t) transformed to the rotating frame is �BR ≈
B1

2
x̂R + (Bz − Ω/γ)ẑ. The time dependence of µR in the rotating frame is

given by
d�µR

dt
= γ�µR × �BR (12.9)

The mathematics of the rotating frame follows from consideration of a
system rotating at the angular frequnecy �Ω. For example, for rotation about
the z–axis, �Ω = Ωẑ. In this case, the time dependence of the vector �µ in the
lab frame becomes

d�µ

dt
=

d�µR

dt
+ �Ω × �µ (12.10)

The term d�µR

dt
is the time derivative of �µ that would be measured IN THE

ROTATING FRAME. A special case arises when d�µR

dt
= 0, i.e. the magnetic

moment is STATIC in the rotating frame and thus the time dependence of
�µ in the lab frame is

d�µ

dt
= �Ω × �µ (12.11)

In the rotating frame, the motion of �µR is found by combining equations
5 and 10:

d�µR

dt
= γ�µ × ( �B +

�Ω

γ
) (12.12)

You can see that this is similar to equation 5 as long as �B is replaced by

�BR = �B +
�Ω

γ
(12.13)
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The motion of a spin measured in the rotating frame is thus that of a spin
in the presence of an effective field �BR.

Now consider the following: A static field �B = B0ẑ and a resonant oscil-
lating field along the x–axis in the lab �B(t) = B1 cos ω0t, where ω0 = γB0.
In the rotating frame, BR

z = 0, BR
x = B1

2
, and By = 0. Equation 9 shows

that

d�µR
x

dt
= 0 (12.14)

dµR
y

dt
= γµR

x ∗ B1

2
(12.15)

dµR
z

dt
= −γµR

y ∗ B1

2
(12.16)

with solution

µR
x (t) = const. (12.17)

µR
y (t) = µT cosωRt (12.18)

µR
z (t) = −µT sinωRt (12.19)

The solution shows that �µR precsses in a cone about the x̂R–axis at the
frequency ωR = γB1/2. This precession is given the name “Rabi Oscillation,”
and ωR is called the “Rabi Frequency.”

Nuclear Magnetism

Magnetism in materials is due to an ordered collection of microscopic mag-
netic dipoles (or magnetic moments), each with a north and south pole.
Conventional magnetism arises from the magnetic moments of electrons that
are not coupled in spin–up–spin–down pairs in a material. In some cases,
most notably oxygen (O2), the atomic electrons in the molecule bind in the
configuration of two spins up, called the spin–triplet state. In other cases,
for example neutral atoms with odd atomic number A, the odd number of
electrons leaves one or more electrons unpaired in the atoms’ ground state.
These systems with net electron spin not equal to zero are called electron
paramagnetic. But generally the magnetic moments of atoms or molecules
are randomly aligned so that a sample of the material has no net magnetism
or magnetic moment. However, for metals such as Fe, Ni, Co, and alloys,
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permanent magnetism can arise as the crystaline structure supports an or-
dering of electron magnetic moments in the bulk material. All permanent
magnetic effects exploited in technology, such as magnetic recording media
(floppy disks, credit cards), inventory control, refrigerator magnets, solenoids
in automobile starters, and a near infinity of other examples, are due to elec-
tron magnetism.

Nuclear paramagnetism is the net magnetic moment of the nucleus of an
atom and occurs in all isotopes with nuclear spin not equal to zero. Thus all
isotopes for which the proton number (Z) and/or the neutron number (N) is
odd have nuclear paramagnetism. The magnetic moment of a paramagnetic
nucleus is typically 1000 times less than that of a paramagnetic atom, and
nuclear ferromagnetic effects do not exist. As a result, the effects of nuclear
magnetism do not affect practical life. However a bulk magnetic moment
and magnetization does arise when a sample of nuclear magnets is placed in
a magnetic field, and it is this bulk moment that is exploited in NMR and
MRI.

The bulk magnetic moment of any sample of atoms with nuclear param-
agnetism is

M = P [A]µV (12.20)

where [A] is the concentration of atoms, PA = C↑ − C↓ is the difference of
concentrations of spin–up (C↑) and spin–down (C↓) nuclear moments, and µ
is the magnetic moment of each nucleus. P is called the polarization of the
sample, and the concentration [A] = C↑ + C↓. The magnetization concentra-
tion or simply magnetization is the magnetic moment per unit volume

M = P [A]µ. (12.21)

A nuclear magnetic moment is often expressed in units of the nuclear
magneton

µ = gµN (12.22)

where

µN =
eh

4πmp

= 5 × 10−27amp − m2 (12.23)

and mp is the mass of the proton. A magnetic moment has units of current
times area (amp-m2 = Joules/Tesla). The factors g for several isotopes are
given in table 1.

In applications of magnetic resonance, a static magnetic field, �B0, creates
an axis of quantization with “spin–up” and “spin–down” corresponding to
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parallel and antiparallel to B0. The static field B0 also produces energy level
separation for spin 1/2 given by,

∆E = h∆ν = 2µB0. (12.24)

As the magnetic moments and the thermal bath of translational and rota-
tional degrees of freedom exchange energy, an equilibrium is established, and
the lower energy state has greater concentration than the higher energy state.
The concentration difference is given by

C↑
C↓

= e
2µB0

kT (12.25)

so that

P =
C↑ − C↓
C↑ + C↓

=
e

2µB0
kT − 1

e
2µB0

kT + 1
=

e
µB0
kT − e

−µB0
kT

e
µB0
kT + e

−µB0
kT

(12.26)

where k = 1.38 × 10−23 J/◦K is Boltzman’s constant. For any reasonable
field, µB0

kT
is so small that the exponential can be approximated by

e±
µB0
kT ≈ 1 ± µB0

kT
(12.27)

so that

P ≈ µB0

kT
(12.28)

For the typical magnetic field B0=1.5 T, and the temperature 37◦ C = 310◦

K, P ≈ 1.1 × 10−5.
The energy level separation

∆E = hν0 = 2µB0 (12.29)

shows that for each magnetic field value, there is a unique characteristic
or resonance frequency for the magnetic moments. Energy can be added
or extracted from the magnetization of the sample most effectively at this
resonant frequency, which corresponds to the splitting of spin–up and spin
down. This adding or extracting of energy is the basis of magnetic resonance.

The magnetic resonance frequency for an isolated nuclear magnetic mo-
ment is

ν0 =
2µB0

h
= γB0. (12.30)
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However when the nucleus is imbedded in an atom and the atoms in a sample
of material, the actual magnetic field is partially shielded, that is reduced so
that the measured frequency is

ν = ν0(1 − α) (12.31)

where α is called the chemical shift, which is typically measured in “parts
per million” or ppm.

Table 12.1: Magnetic Moments and NMR Frequencies for Several Isotopes.

Isotope Abundance µ
µN

γ/2π (MHz/T)

proton (1H) 99.985% 2.79 42.6
deuteron (2H) 0.015% 0.857 6.53 (spin 1)

3He – -2.13 32.4
13C 1.1% 0.702 10.7
19F 100 % 2.63 40.05
29Si 4.6% -0.555 8.46
31P 100% 1.13 17.23

129Xe 26.7% -0.773 11.78

Quantum Mechanics of NMR

The Hamiltonian for a spin system in a magnetic field is

H = −�µ · �B (12.32)

where �µ = h̄γ�I and h̄γ = gµN/I. Let the z–axis be along the direction of

the static field so that �B = B0ẑ. Then

H = −h̄γB0Iz (12.33)

The eigenfunctons of H are labeled by I and mI , and the 2I + 1 eigenvalues
are

E(I, mI) = −h̄γmIB0 (12.34)
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These span the range from −h̄γIB0 . . . + h̄γIB0. The wave function for any
state can be expanded in terms of these eigenstates:

|ψ >=
mI=+I∑

mI=−I

A(mI)e
−imIω0t|I, MI > where

mI=+I∑

mI=−I

|A(mI)|2 = 1 (12.35)

and ω0 = γB0.
As we have seen, the observable in NMR is a transverse component of

magnetization, for example µx. We can express the operator µx = h̄γIx in
terms of the raising and lowering operators I+ and I−:

µx = h̄γ
I+ + I−

2
(12.36)

We therefore want to find

< µx >=
h̄γ

2
(< ψ|I+|ψ > + < ψ|I−|ψ >) (12.37)

The raising and lowering operators produce the following results:

I+|I, mI >=
√

(I − mI)(I + mI + 1)|I, mI + 1 > (12.38)

I−|I, mI + 1 >=
√

(I + mI + 1)(I − mI)|I, mI > (12.39)

Thus < µx > involves the summing over eigenstates from mI = −I to mI =
I − 1. Each term in the sum involves the product ei(mI+1)w0te−imIw0t (for I+)
or eimIw0te−i(mI+1)w0t (for I−) and takes the form

e−iw0t < I, mI + 1|I+|I, mI > or e+iwot < I, mI |I−|I, mI + 1 > (12.40)

Thus

< µx > = gµN
e−iω0t + e+iω0t

2

mI=I−1∑

mI=−I

√
(I − mI)(I + mI + 1)(12.41)

= gµN cos ω0t
mI=I−1∑

mI=−I

√
(I − mI)(I + mI + 1) (12.42)

So the quantum mechanics of NMR describes the oscillation of the transverse,
x, component of µ at the frequency ω0 = γB0. For example, when I = 1/2
(e.g. for protons) h̄γ = 2µp, where µp = gpµn. For protons, γ = 4.26 kHz/G.
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Pulsed NMR

Resonance is the exchange of energy between two systems at or near the
characteristic resonant frequency of one or both of them. For example, a
child on a swing is a system with a resonant frequency, for small oscillations
and no dissipation, given by

ν =
√

g/L (12.43)

where L is the length of the “pendulum” and g=9.8 m/s2. When one adds
energy to the system by pushing periodically at the resonant frequency, the
energy stored in the oscillations, which is proportional to the oscillation am-
plitude squared, increases. Any mechanical system for which there is some
kind of restoring force always directed toward the equilibrium position is an
oscillator and has a resonant frequency for small oscillations. (For large oscil-
lations, more complicated behavior leads to anharmonic motion and multiple
normal modes.) A discrete system, such as that described by the quantum
mechanics of spin 1/2 nuclear magnetic moments, displays analagous reso-
nant behavior, the resonant frequency given by ω0 = γB0.

Dissipation, the transfer of oscillation amplitude and energy from the
oscillations to heat (i.e. translation and rotation of molecules) and similar
forms of energy, is important in any real physical system. For magnetic
moments, dissipation occurs due to the exchange of energy with the thermal
motion of atoms or molecules and due to the energy extracted to produce
NMR signals.

A typical, and the simplest, NMR experiment begins with a sample in a
magnetic field �B0ẑ. The small excess of spin–up moments (for µ positive)
along leads to a bulk magnetic moment in the sample M. A pulse of os-
cillating magnetic field at the resonance frequency (Bx(t) = B1 cos ω0t) is
applied along the x-axis for a duration τ . The result is a Rabi oscillation
about x̂R, the x-axis in the rotating frame, by an angle θ = 1

2
γB1τ (The

pulse duration τ should be much longer than 1/ω0, but much shorter than
the dissipation times described below.) When B1 and τ are chosen so that
θ = 90◦ = π/2 radians, the term used is a pi–over–two pulse. Of course any
angle θ is possible.

A π/2 pulse is special because just after the pulse, at t = 0, M has
no component along the z-axis. All of the magnetization has been rotated
into the transverse plane. Magnetization is generally described by the two
components ML (along the z-axis) and MT (transverse, that is in the x–y
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plane). The total magnetization is M =
√

M2
L + M2

T , and Mx = MT cos ωt.
After a π/2 pulse, the magnetization precesses about the z–axis, at the

Larmor frequency ω0 = γB0(1−α). The precessing magnetization produces a
magnetic field that can be detected with a pick–up coil. in which the voltage
is produced by Faraday induction. The voltage induced for each turn of the
coil is

V (t) = V0 sin(ω0t) (12.44)

with
V0 = ω0φM = ωkMT (12.45)

where k is a constant that depends on the shape and size of the coil and
sample, their relative position, and the properties of the electronic circuit
that includes the coil.

A typical signal is not constant in amplitude, rather it decays due to a
combination of dissipation, random fluctuation of the phases of individual
magnetic moments, and spatial dependence of the Larmor frequency due to
the unavoidable non–uniformity of B0. In many cases, the decay of the signal
amplitude can be described by an exponential with a time constant T ∗

2 so
that

V (t) = V0e
−t/T ∗

2 sin(ωt). (12.46)

However if non–uniformity of B0 dominates and diffusion of atoms from
one part of the sample to another is not large, the decay is decidedly non-
exponential as you can observe in the laboratory.

For exponential decay, T ∗
2 can be separated into individual contributions

1

T ∗
2

=
1

2

1

T1

+
1

T2

+
1

TB
2

(12.47)

Here we introduce the time constant T1. This is the time constant for M0

recovery to thermal equilibrium – the so called saturation recovery time.
The contribution to decay of MT due to phase fluctuations is T2. Both T1

and T2 are intrinsic properties of the sample and depend on temperature,
density, magnetic impurities, and the nature of the material. These intrinsic
properties are used to provide contrast in medical imaging applications.

The time constants T1 for M0 and T2 for MT (i.e. Mx and My are incor-
porated into the equations of motion for the magnetization. These follows
from the combination of equations 11.5 with 11.21:

dMx

dt
= γ(MyBz − MzBy) −

Mx

T2

(12.48)
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dMy

dt
= γ(MzBx − MxBz) −

My

T2

(12.49)

dMz

dt
= γ(MxBy − MyBx) −

Mz

T1

(12.50)

This set of equations is called the Bloch equations and is fundamental to
NMR. The Bloch equations have been adapted to the behavior of atomic
electric dipoles in the presence of time dependent electric field of light. These
“Optical Bloch Equations” provide a similar description including Rabi Os-
cillations, T1 and T2.

CW NMR

The resonant exchange of energy between the nuclear spins’ magnetization
and the thermal bath, often called the lattice, can also be observed in a
continuous wave (CW) measurement. Consider the resonant LCR “tank”
circuit tuned to a resonant frequency ω. (The term tank circuit comes from
the old days of radio and radar. It’s a circuit that stores electromagnetic
energy!) A multi–loop NMR coil is the inductor, L, and R is the NMR coil
resistance. A voltage V (t) = V0 cos ω0t, provided by a separate electronic
oscillator, is tuned to the resonant frequency of the circuit.

The circuit can be analyzed by elementary application of Kirchoff’s laws
with the complex impedance given by the combination of R and the reactance
of the capacitor and inductor. The current in the circuit is

I(t) = V0

Z cos(ω0t + φ)
(12.51)

where Z =
√

R2 + (XL − XC)2 and φ = arctan XL−XC

R
, and the voltage mea-

sured across the capacitor is

VC = I(t) ∗ XC = V0 sin ω0t ∗ (
Q

((w − w0)2 + γ2/4)
) (12.52)

where the damping factor is γ = R/L. The quality factor of the circuit is
Q = ω/γ.

This analysis assumes that the only source of dissipation is ohmic heating
in wires, which have finite resistance R. Consider, however what happens
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when a sample with nuclear magnetization is placed in the core of the in-
ductor windings. If the driving signal V (t) is far from the nuclear magnetic
resonance frequency, γB0, there is little effect. If, however, we tune B0 so
that ω0 ≈ γB0, the nuclear magnetization can absorb energy from the tank
circuit causing the spins to “flip” from the low energy state to the high energy
state. This energy is continuously transferred to the thermal reservoir (or
lattice) and appears as heat – it is another form of dissipation of the energy
stored in the tank circuit! Thus the damping of the circuit is increased by
the presence of the spin and γ and Q are affected. The observable result
is a decrease in I(t) and the measured VC(t). Actually the change in VC

is tiny compared to VC and can only be detected by sweeping B0 back and
forth across the resonance and only once the baseline is compensated. These
experimental techniques are used in the lab on CW NMR.

The effects of the nuclear magnetization on the inductance of the tank
circuit can be expressed in terms of the magnetic susceptibility of the circuit.
The self inductance of a multi-turn coil depends on how effective the flux
produced by the current in each winding is coupled (or threaded) through
all the other loops of the coil. The coil of an inductor is often wound on core
of magnetic material in order to capture the lines of magnetic flux. In this
case, the inductance depends on the susceptibility of the magnetic material.
Recall the definition of inductance:

LI = NΦ

where Φ is the magnetic flux through each of N identical loops. If there is
no paramagenetic material present, the flux is that produced by the current
in the coil:

Φ =
∫

loop

�B · �A.

If magnetic materials are present, the magnetic field �B produced by current
in the windings has an effect on the magentization �M of the material and
the total magnetic flux becomes

Φ = (1 + qχ)
∫

loop
µ0

�Bcdotd �A

So that the inductance becomes

L = L0(1 + qχ)
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where χ is the susceptibitily, and q is called the filling factor, a measure of
how much of the flux passes through the sample.

The susceptibility is a measure of the magnetic polarizability of the ma-
terial - that is the magnetization induced by the magnetic field produced by
the current in loops. The magnetic susceptibility also depends on frequency
(this is called dispersion), and damping due to the coupling of the magnetic
moments to the thermal reservoir. The damping is therefore expressed as an
imaginary component of the susceptibility:

χ(ω) = χ′ − iχ′′.

The real part of χ (χ′) changes the inductance and the imaginary part (χ′′

changes the resistance and therefore the damping in a CW NMR measure-
ment.


