
University of Michigan 
February 22, 2006 

Physics 441/442 
Physics Advanced Laboratory 

 
 

The Hall Effect and the Conductivity of Semiconductors 
 
 
1.  Introduction 
 
In 1879 Edwin Hall, a graduate student at Johns Hopkins University, observed that when a magnetic 
field is applied at right angles to the direction of current flowing in a conductor, an electric field is 
created in a direction perpendicular to both (see Figure 1).  The effect may be used to determine the 
sign of the moving charges that form the electric current.  The Hall effect is important in the analy-
sis of semiconductor material (in which the charge carriers can be either positively or negatively 
charged).  It also has many important practical applications in detecting and measuring magnetic 
fields.  For example, electronic ignition systems for cars nowadays are based on Hall effect sensors, 
rather than mechanical breaker points used up to a few years ago. 
 

One may consider the Hall effect to result from the force on a charge moving in a magnetic field.  
Consider a positive charge moving in the direction indicated by the vector v in Figure 1.  With the 
direction of magnetic field B as shown, the force would be in the direction vxB.  Thus the far face 
of the conductor becomes positively charged.  On the other hand, if the current consisted of negative 
charges moving in the negative x-direction, the force would be in the direction –(-vxB), which is the 
same direction as before, so now the negative charges would be pushed toward the far face of the 
conductor and it would become negatively charged.  The potential difference induced by this effect is 
called the Hall voltage, and the sign of the Hall voltage allows one to determine the sign of the carri-
ers of current. 
 

In studying the Hall effect it is useful to define various quantities.  The nomenclature follows that of 
Melissinos, pp. 83-88, except we use B for the magnetic fields, not H. 
 
If the current is along the x-direction (Figure 1), the average velocity of the charge carriers is re-
lated to the electric field by 
  vx=µEx 
The constant of proportionality µ is called the mobility, which is designated as µH when measured in 
a magnetic field. 
 

The current density Jx and the electric field are related as Jx=σEx where σ is called the conductivity.  
Jx can also be related to n, the number of charge carriers per unit volume.  All the carriers in a box of 
length vx will pass through a unit area in 1 sec.  This corresponds to a volume vx, and a total charge 
ne vx.  Thus jx=nevx.  Substituting µEx for vx we get Jx=neµEx and replacing Jx by σEx we get 
 

σ=neµ 
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Figure 1.  The diagram shows the direction of the magnetic field B, and the direction of mo-
tion of the charge carriers that form the current. 

 
The magnetic force on the moving charges is balanced by the electric field produced by the charges 
pressed against the near and far faces of the conductor Ey=vxB=µExB.  We define the Hall angle as 
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where 1 is the length and t is the thickness of the crystal. 
 
Finally we define the Hall coefficient RH by the equation 
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It is easy to show that 
 
R

H
! = µ (see Melissinos, p. 85); RH may be either positive or negative de-

pending on the sign of the carriers of the current.  It is an important property of the material carry-
ing the current. 
 
In this experiment we use the Hall effect to determine the sign of the charge carriers in samples of 
semiconductors and measure the electrical resistivity, the Hall coefficient, and the Hall mobility for 
each of two samples of germanium, one n-type, the other p-type.  As discussed below, these quanti-
ties are strongly temperature dependent.  The measurements are made over a range of temperature 
from approximately room temperature to 120°C.  The samples are relatively pure by the standards 
of the semiconductor industry, through not as pure as the sample described in Melissinos.  Never-
theless the samples should exhibit both intrinsic and extrinsic behavior, depending on the temperature.  
These terms are defined in the following paragraphs. 
 
 

A.  Intrinsic Behavior 
 
In a pure semiconducting substance such as silicon or germanium, there is an energy gap Eg be-
tween the energy states of the bound electrons (called the valence band) and the states of free 
electrons (called the conduction band).  This gap is ~1 eV, and in order to cross it an electron 
must receive this much energy by thermal excitation.  The population density of electrons in the 
conduction band nc is therefore given by 
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where k is the Boltzmann constant and T is the temperature on the Kelvin scale.  At room tempera-
ture kT~0.025 eV; thus only a tiny fraction, ~e-20≈2×10-9, are able to jump the gap.  Though this 
fraction is small, it represents a fairly large density of electrons (~1012 cm-3); this allows some moder-
ate electrical conductivity, which is small in comparison to metals, but large in comparison to insula-
tors.  Hence the name semiconductors.  One interesting property of pure semiconductors is that their 
electrical conductivity increases rapidly with increasing temperature according to Equation 1.  With a 
very pure sample of semiconductor material (i.e., number density of impurities ≤1012 cm-3) we would 
observe this intrinsic behavior above approximately room temperature. 
 
 
B. Extrinsic Behavior 
 

The kind of semiconductors widely used in the electronics industry do not exhibit the intrinsic be-
havior described in the previous section.  They have been deliberately “doped” with impurities to 
raise their conductivity.  Figure 2a shows the energy level diagram for an n-type semiconductor.  In 
 

 
Figure 2.  Energy band structure of n-type and p-type semiconductors. 

 
case the impurities are donor atoms.  They have an energy level which resides a fraction of an electron 
volt below the conduction band.  At normal temperatures they readily cross this small gap Ed to 
populate the conduction band.  The density of electrons in the conduction band is limited only by 
the density of impurities in the sample.  Typical samples might contain 1015 to 1016 atoms of dopant 
per cm3.  In a p-type semiconductor, the dopant is chosen so that the conduction band for the at-
oms of dopant lies a fraction of an electron volt above the top of the valence band as shown in Fig-
ure 2b.  Electrons from the valence band readily cross the small gap Ea to the acceptor sites pro-
vided by the dopant.  In doing so they leave holes in the valence band.  These holes behave like posi-
tive charges and account for most of the electrical conductivity in a p-type semiconductor, because of 
their higher mobility. 
 
In the extrinsic region, conduction is due mainly to impurity carriers.  The concentrations of impuri-
ties in samples of “pure” germanium are high enough that they will show extrinsic behavior at tem-
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peratures below room temperature when the density of electrons in the conduction band is small 
compared to that of impurity atoms. 
 
 
2. Equipment 
The crystal, made by PHYWE, is mounted on a printed circuit card and has an internal electric 
heater monitored by a thermocouple.  A constant current regulator mounted on the card provides 
constant control current, independent of the resistance of the crystal that varies strongly with tem-
perature.  This can be bypassed and the control current can be provided directly. 

The 4 mm banana jacks bring out the Hall voltage and the drop of voltage along the crystal.  The 
circuit card is mounted between the poles of an electromagnet to provide the magnetic field. 
 

 
 Figure 3.  The PHYWE card with a germanium crystal.  The Hall voltage is measured between terminals (7) 
and (8).  The Hall current is applied between terminals (1) which is positive and (2) or (3);  the latter uses the 
onboard current regulator. Heater current is applied between terminals (4,5), and the thermocouple connec-
tions are (9,10).  The knob (6) controls the offset. 
 
 
There is a thermocouple mounted on the board next to the crystal.  The conversion factor to get 
temperatures from the voltage readings is 40 µV/°C.  Note that the “reference junction” for this 
thermocouple is at room temperature, so you are measuring the temperature difference between the 
sample and room temperature which is about 20° C.  Therefore a sample temperature of 110° C 
corresponds to a thermocouple reading of about 3.6 millivolts! 
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3. Objectives and Procedure 
 

We want to measure the resistivity and the Hall coefficient of each sample as a function of tempera-
ture and to observe the Hall coefficient inversion of the p-type sample. Measurements will not be 
made below room temperature, so you will mostly see the intrinsic behavior.  A heater is used to 
heat the samples.  The magnetic field can be varied by varying the current in the electromagnet.  The 
techniques and measurements are similar to those described in Melissinos I, Chapter 3, Section 3.  
One difference is that in our experiment we use a constant current source, and we determine the 
resistance of each element in the circuit by measuring the voltage drop across that element.  A set-
ting of ≈30 mA is appropriate for the current through the sample.  Apply approx. 15 V between 
terminals 1 and 2 on the board.  Make sure you observe the correct polarity;  otherwise the current 
regulator on the board will not work.  If the current is not ~30 mA, adjust the small “pot” with a 
screwdriver.  The current through the sample should be monitored either with the current meter on 
the power supply or an external ammeter. 
 

If the leads sampling the Hall voltage are not precisely opposite one another, the voltage they sample 
will not precisely change sign when the magnetic field is reversed because the voltage measured in-
cludes a component due to the IR drop between the two points.  The adjusting knob (6 in Fig. 3) is 
used to adjust the Hall voltage to approx. 0 with no magnetic field.  You can correct for any remain-
ing offset by subtracting the Hall voltages measured without the magnetic field, or, better yet, meas-
ure the Hall voltages with both polarities of the magnetic field. 
 

First, take data on the Hall voltage vs. magnetic field at room temperature with constant current 
through the sample.  Center the sample between the pole tips of the magnet and orient it parallel to 
the pole tip.  Measure the Hall voltage as a function of magnet current from zero to the maximum 
current (5 A).  The magnet current can be read with sufficient accuracy from the meter on the sup-
ply.  Use a Keithley microvoltmeter to read the Hall voltage.  Also measure the voltage across the 
sample and the current through it, so you can calculate its resistance.  Measure the Hall voltage for 
both directions of the magnetic field.   
 

Now take data on the Hall voltage vs. temperature with constant current through the sample and the 
magnetic field at its maximum.  For the thermocouple output, you can use a handheld DVM with a 
temperature scale to monitor the temperature, or use a millivoltmeter to measure the difference be-
tween the sample temperature and room temperature.  If  you use the  mi l li vo l tmeter,  remember 
that  the  thermocouple  reading shou ld not  exceed 3.6 mi l l i vo l t s .   Hook up a power supply capable 
of producing 5 or 6 V at about 1 A to the “6V” heater terminals on the board.  Turn up the heater 
supply voltage to about 5 V and watch the sample temperature rise.  When the temperature reaches 
100° C, start decreasing the heater voltage.   Do not  rai s e  the  t emperature  beyond 120°C.  Starting 
at about 110° C, gradually lower the sample temperature.  While it is decreasing, monitor the Hall 
voltage with and without magnetic field and voltage across the samples and the temperature.  You 
can also measure the Hall voltage vs. Hall current.  To do this, use terminals (1) and (2) on the board 
to bypass the internal current regulator.  Then use the power supply set up for constant current to 
vary the Hall current.  Do not exceed 40 mA. 
 

Take measurements for both n-type and p-type germanium.  If this is a 3-week experiment, you 
should also do the copper sample.  The procedure for copper is similar, but a much larger current is 
needed to see the effect.  Our supplies can go up to about 7 A which should be sufficient.  (See 
Question 4.) The temperature dependence for copper is not particularly interesting. 
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After completing all the measurements, calibrate the magnetic field at the center of the gap vs. cur-
rent using a magnetic field probe (which probably uses the Hall effect!).  Make sure you understand 
the direction of the magnetic field.  You’ll need the dimensions of the sample to calculate the resis-
tivity. 
 

In analyzing the data, generally follow the procedures in Melissinos I, pages 92-97.  The Hall voltage 
is obtained directly from the difference between the 5 A and 0 A readings.  Plot the corrected Hall 
voltages vs. magnetic field.  Plot the resistance of the sample and Hall voltage vs. T. 

a) From the slope of log ρ vs. 1/T in the intrinsic region, estimate the value of the energy gap 
Eg for germanium.  (ρ is the resistivity ≡ 1/σ;  you can also plot log VSample since it is propor-
tional to ρ). 

b) Verify which sample is n-type and which is p-type. 
c) Determine the inversion temperature for the sample of p-type germanium. 
d) From measurements of the Hall coefficients at the lower temperatures, estimate the density 

of impurity carriers in the sample (Melissinos I, p. 85).  (This will not be very accurate since 
the data are not really in the extrinsic region). 

 

 
Additional Questions 

1.  Explain briefly the difference between intrinsic and extrinsic behavior.  What determines 
which behavior applies at a given temperature? 

2. Assuming each atom of copper contributes one conduction electron, calculate the density of 
charge carriers for copper and compare with that obtained for the semiconductor samples. 

 3. A sample of p-type germanium has a density of holes of about 1015 cm–3.  Assuming that the 
holes are the majority charge carrier in the material, what Hall voltage do you expect to measure 
when a sample of thickness 1 mm is placed in a 0.25 T magnetic field with a current of 10 mA 
flowing through it perpendicular to the magnetic field?  

4. Estimate what Hall voltage you would expect for a copper sample with a current of 10 A and 
dimensions ~18 µm thick and 25 mm on a side.  Why is the measurement of the Hall voltage 
more difficult with a good conductor like copper?  

5. Explain how the Hall effect can be used to measure or sense magnetic fields. 
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