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Introduction 

 
The optical rotation of light by a refractive medium in a magnetic field was first 

discovered by Michael Faraday1 in 1845. The effect, like optical rotation induced by 
organic molecules, is due to circular birefringence, the difference in propagation 
velocities for light of opposite circular polarizations. Since atomic states are weakly 
perturbed by magnetic fields, the dispersion in the optical refraction indices is of the 
order of a few parts per million. It is testimony to Faraday’s ability as an experimenter to 
have observed this at all, several decades before the discovery of electric lighting and a 
century before most of the experimental apparatus we now take for granted. George 
Fitzgerald2 (of Lorentz-Fitzgerald contraction fame), using arguments from classical 
mechanics, provided the connection to the Zeeman effect that had been discovered the 
previous year, in 1897. In this experiment, you will measure the Faraday effect for two 
different media and three different wavelengths of light. The results will be analyzed in 
terms of the optical dispersion of the media and the classical model first described by 
Fitzgerald. 

 
Optical Rotation 

 
The geometry of electromagnetic waves is shown below in Figure 1. In (a), a linearly 

polarized wave is depicted that consists of two equal, in-phase components of the electric 
field. The polarization lies in a plane defined by the direction of propagation and a line at 
45° to the vertical axis. Although the wave in (b) looks quite similar, the 90° shift of 
phase between the vertical and horizontal electric field components ensures that 
polarization direction is continually rotating in space and time. There are two naming 
conventions for circularly polarized light depending on what you consider to vary, time 
or space. If your location remains fixed and you look at the time dependence of the wave 
that sweeps past you, the direction of rotation of the electric field defines the handedness. 
For (b), pointing the thumb of your left hand in the direction of propagation makes your 
fingers point in the rotation direction of the field – thus, the wave is left-handed (LH). On 
the other hand, if you freeze time and look at the three-dimensional arc traced out by the 
electric field vector, you see a spiral with the shape of a right-hand screw and is thus 
called right circularly polarized light (RCP). Not surprisingly, the mirror image of (b) is 
right-handed (RH) and left circularly polarized (LCP). 

A wave linearly polarized along the x-axis can be described by: 
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and also be represented as a linear sum of RH and LH states: 
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Figure 1. (a) Linearly polarized light – the ray is polarized in a plane at 45° to the 
vertical; (b) Circularly polarized light – the wave shown is left-handed (LH) or 
equivalently, right circularly polarized (RCP). 
 
In a refractive medium, 
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where n is the refractive index which will, in general, be different for left- and right-
handed rays. Thus after traversing a distance, z, in the optical medium, the wave will 
become: 
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The beam is still linearly polarized but the plane of polarization has been twisted in the 
clockwise direction (as seen from the ray origin) by an angle: 
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Connecting the Refractive Index to Atomic Physics 

 
Having described optical rotation in terms of the index of refraction, we must now 

find a relationship between an applied magnetic field and its effect on the optical 
properties. Although the Faraday effect was discovered over 160 years ago, textbook 
explanations3, 4 of the underlying physics are not very detailed and sometimes wrong. The 
following derivation assumes that the electrons in a dielectric medium behave according 
to classical mechanics under the combined effect of an external electromagnetic wave 
and a constant applied magnetic field. This was originally developed5 in this form by 
Arnold Sommerfeld in 1949. Predicting the actual direction of rotation of the Faraday 
effect requires some care in keeping track of the arithmetic signs attached to various 
terms. In particular, e, associated with the charge of the electron, is a positive number. 
The fact that the electron is negative will be accounted by explicitly inserting the 
appropriate sign for every term that includes e as a factor. 

The interaction of an electromagnetic field with a dielectric occurs via perturbations 
to the electrons in atomic or molecular orbitals. Generally, it is virtual transitions from 
the ground state to the lowest excited state that produces the largest contribution to the 
refractive index. The energy difference between these states, ΔE = Ñω0, is usually 
considerably greater that the external E-M wave, Ñω. Thus, the lifetime of any excited 
state is exceedingly brief and the energy of the incident wave is undiminished. This 
sloshing back and forth between adjacent energy levels can be modeled in terms of 
simple harmonic motion with characteristic frequency, ω0. That assumption will be the 
starting point for the calculation that follows. 

The general plan is to compute atomic electron coordinates for motion induced by the 
external E-M field and from the associated polarization vector, P, calculate the 
permittivity, ε, and finally the square of the refractive index. This leads directly to an 
expression that predicts the magnitude and direction of the Faraday effect with 
satisfactory accuracy. 

The coordinates will be a standard Cartesian grid with z-axis along the direction of 
light propagation. The applied constant magnetic field, B, is oriented in the same 
direction. Newtonian mechanics gives the following equation of motion 
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where r decribes the transverse motion of an electron in the x-y plane. The ratio, eB/m, is 
the cyclotron angular rotation frequency, denoted ωc. This leads to the following 
solutions for r in the presence of right-handed or left-handed circularly polarized light: 
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At this point, we can calculate the induced polarization of the medium via: 
 

Ne= −P r  
 
where N is the atomic number density. Furthermore, it is convenient to parametrize N in 
terms of the plasma frequency, 
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Thus, we have the following expressions for the polarization vectors, PRH and PLH : 
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Since: 
 
 εÀE = ε0ÀE + P 
 
and for most dielectrics, μ @ Àμ0, so that: 
 
 nÀ2 @ Àε/ε0 
 
It follows that the refractive indices for the two circular polarization states are: 
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Noting that: 
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we obtain the circular birefringence: 
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This leads directly to an expression for the Faraday rotation angle introduced earlier: 
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This formula was first derived6 by Henri Bequerel (of radioactivity fame) in 1897 and 
bears his name. The term denoted by V is called the Verdet constant7 after Pierre Verdet 

who was first to note the explicit linear dependence on the integral, z⋅∫B d . The most 
important aspect of this result is the link between the frequency of the incident radiation, 
ω, and the cyclotron frequency perturbation, ωc. Thus, the dependence of the Faraday 
rotation angle on dn/dω is likely to survive, even in cases where n is described by more 
complicated physical models. As noted8 by Robert Serber (who became much more 
famous for his participation9 in the Manhattan Project), the expression for V is modified 
by the restrictions of atomic transition g-factors, leading to: 
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In the experiment that follows, you should explore the following characteristics of 

Faraday rotation to test this microscopic model: 
 
1. Does the direction of rotation depend on the direction of the applied magnetic 

field? 
 

2. Does the magnitude of the Faraday rotation depend linearly on z⋅∫B d ? 
 

3. Using the Sellmeier coefficients to compute the dispersion of the refractive 
index, determine if the frequency (or wavelength) behavior of Faraday 
rotation is experimentally observed. 
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4. Compute the value for α given above by comparing the ratio of observed to 
computed values of the rotation angle, φ. Comment on the extent to which α 
does or does not vary as a function of wavelength or glass sample. 

 
 

Experimental Apparatus 
 

The experimental apparatus for this experiment is shown in Figure 2 below. The basic 
arrangement is quite simple: a beam of polarized light from a laser passes through a 
transparent sample immersed in a longitudinal magnetic field before passing through a 
second rotatable polarizing filter and absorbed finally by a silicon photodiode detector. 
The intensity of this remaining beam is determined by measuring the photodiode current 
across a 10 KΩ series resistor. For highest sensitivity, use the millivolt scale on the 
Agilent U1252A multimeter. The direction of polarization is measured by rotating the 
polarizer to minimize the photo signal and reading the relative orientation from the scale 
printed on the rotary mount (for more details, see discussion of use of vernier scales). 
 

 
Figure 2. Faraday rotation apparatus. From right to left; laser pointer light source, magnet 
assembly and sample holder, rotating polarizer mount, silicon photodiode detector, digital 
multimeter. 
 

The magnetic field is produced by a ring of five permanent rare earth (NdFeB) 
magnets housed in an aluminum enclosure and equipped with steel pole tips. The field of 
these magnets cannot be varied but the samples can be positioned at different locations to 
vary the integral of the field over the sample lengths. As shown in Figure 3, the central 
field is greater than 3 kilogauss and field integrals of the order of 0.012 Tesla-meters are 
obtainable for the samples of interest. Some care should be exercised with this device – 
Do Not Bring Steel Objects Anywhere Nearby! Sample positions should be determined 
with respect to the center of the magnet array. Since the overall distance between the two 
steel pole tips is 4.005”, such measurements can be referenced from the ends as well. 
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Figure 3. Longitudinal magnetic field as a function of distance along the 
symmetry axis. The red points show the measured data; the blue line is a 
B-spline fit, symmetric about z = 0. 

 
The three lasers available for use in this experiment are shown in Figure 4. They 

provide monochromatic beams at wavelengths of 473, 532 and 650 nm. For the blue 
laser, an orange Velcro strap has been provided to keep the On switch depressed. Please 
remove it as soon as possible after use since the battery for this gadget is a bit pricey. 
 

 
Figure 4. Array of laser light sources: From right to left; blue (λ = 473 nm), green (λ = 
532 nm), red (λ = 650 nm). The red laser requires the power supply on the left; the other 
two are battery-powered. 
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Two transparent samples are available: BK-7 (3” long hexagonal prism) and SF-59 (4” 
long yellowish cylindrical rod). These materials are optical glasses manufactured by the 
Schott Corporation. Optical design requires extremely accurate knowledge of the 
refractive index across the visual spectrum. Thus, the indices of these materials are 
characterized to one part in 200,000. BK-7 is the cheapest and most common optical 
glass with relatively low dispersion and moderate index (nd ~ 1.52) while SF-59, with a 
very high Pb content, has a high dispersion and high index (nd ~ 1.95). 

The only adjustments required for this experiment are laser beam collimations 
through the center of the samples. Figure 5 below shows the green laser beam correctly 
exiting the SF-59 lead glass sample. 

 

 
Figure 5. Properly collimated green laser beam exiting the SF-59 
glass sample. 

 
 

The Use of Vernier Scales 
 

In a digital age, it is easy to assume that measurements will always be presented as 
strings of numeric digits. However, in this experiment, the rotating polarizer mount 
employs an analog scale invented by the French mathematician Pierre Vernier in 1631. 
By clever geometry, the vernier scale achieves accuracies that are far better than the 
primary rulings on the instrument. The basic principle is shown in Figure 6. The red 
vernier scale interpolates the upper scale, providing an extra digit of precision. Note that 
for the polarizer mount used in this experiment, the coarse scale is ruled in degrees and 
the vernier scale is ruled in increments of 5 arc-minutes. 
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Figure 6. Two examples of vernier scales. In (a), the 
vernier scale origin points directly at 100. In (b), the 
origin of the vernier scale lies somewhere between 120 
and 130 (upper green arrow). Looking at the match 
between the upper and lower rulings, the lines that 
intersect most closely correspond to “3” on the vernier 
scale (lower green arrow). Thus, the appropriate reading 
would be “123”. 

 
Experimental Procedure 

 
The overall procedure is designed to explore the behavior of the Faraday effect as a 

function of wavelength and magnetic field. For each of three wavelengths, you should 
establish the extinction point for the analyzing polarizer with no sample in place. You 
may find it easier to find the exact extinction angle by finding roughly equivalent 
transmissions a degree or so on either side of the minimum and averaging the two. Obtain 
data for the three wavelengths with the glass samples centered in the magnet assembly. 
Make measurements for both directions of the magnetic field. This is accomplished by 
removing the magnet locking pin, lifting up the magnet assembly and reversing its 
direction. You can determine your measurement errors by comparing the average of the 
rotation angles corresponding to the two field directions with the extinction angle for no 
sample whatsoever. Ascertain the actual direction of the magnetic field inside the bore by 
using the longitudinal field Hall probe and compare with the field from a current loop 
whose field direction you can confidently predict. Finally, explore the dependence of the 
Faraday rotation on the magnetic field integral using the green laser (because it’s quite 
stable) and the SF-59 sample (because the effect is larger). Position the sample at various 
distances from the magnet center to explore magnetic field integrals from +12 to -6 
millitesla-meters (see Figure 8 to choose appropriate offset distances). 
 

Data Analysis 
 

The data you have taken should be analyzed in terms of the model developed earlier. 
To accomplish this, you will need values for ∫Bdz and dn/dω corresponding to the 
appropriate experimental conditions. The values for the magnetic field were shown 
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earlier in Figure 3. To simplify further computation, the data has been fitted to a smooth 
curve (cubic B-splines) and integrated to produce the curve shown in Figure 7. 

 

Figure 7. 
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To compute the effective field integrals over the two optical glass samples, the 
integrals between sample endpoints were differenced to produce the curves shown in 
Figure 8. These values can be obtained for arbitrary sample length and position from the 
Excel spreadsheet, Faraday_field.xls, available on the Physics 441/442 Web site. 
 

λF 486.13  nm 
λd 587.56  nm 
λC 656.27  nm 

 
Table I. Wavelengths used to define 
the Abbe number for refractive media. 

 
The optical properties of glasses used for high quality lenses are generally 

characterized by two parameters: the index of refraction, nd, at a wavelength of 587.56 
nm and the Abbe number, Vd, defined by: 
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The Abbe number (not to be confused with the Verdet constant, V) indicates the 
dispersiveness of the medium – a low value means that the refractive index varies 
considerably with wavelength. With some simplifying assumptions, the Abbe number can 
used to make an estimate of ω·dn/dω, a quantity needed to predict the magnitude of the 
Faraday effect. To a crude approximation, the refractive index, n, is described by: 
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where the coefficients, a and b, are related to nd and Vd by: 
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This leads to the following estimate for dn/dλ: 
 

 3

2dn b
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For this experiment, we would like to obtain the values for dn/dλ to considerably 

greater precision. Optical designers need to know the wavelength dependence of the 
indices of refraction of glasses to very high accuracies in order to minimize chromatic 
aberrations that would otherwise ruin the performance of high quality lenses. The 
standard representation is called the Sellmeier formula: 
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Note that the equation computes the square of the index of refraction. For the glass 
samples used in this experiment, the parameters are given in Table 2 below. Using this 
representation will allow you to compute dn/dλ (and thus dn/dω) far more accurately than 
possible with the Abbe number. 
 

 Schott SF-59 Schott BK-7 
B1 2.05775824 1.03961212 
B2 5.28644661 × 10-1 2.31792344 × 10-1 
B3 1.00043574 1.01046945 
C1 1.67799599 × 10-2 6.00069867 × 10-3 
C2 6.55335804 × 10-2 2.00179144 × 10-2 
C3 1.10002549 × 102 1.03560653 × 102 
nd 1.95250 1.51680 
Vd 20.36 64.17 

 
Table II. Sellmeier coefficients and glass characteristics for Schott SF-
59 and BK-7 glasses. The coefficients are defined for wavelengths 
specified in microns. 
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