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The following notes describe the kinematics of the double pendulum.  The starting point is a 
pendulum consisting of two point masses, m, and m2, suspended by massless wires of length l1 
and l2.  The treatment of this case can be found at: 

 
http://scienceworld.wolfram.com/physics/DoublePendulum.html 
 

For a real system, the equations of motion depend in a more complicated way on the distribution 
of mass that is essential for modeling the physical pendulum used in this experiment.   
 

Figure 1. Point mass double pendulum. Figure 2. Extended mass double pendulum.



University of Michigan  Department of Physics 2

Double pendulum with point masses: 
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Double pendulum with distributed masses: 
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Thus, the Lagrangian for the system is: 
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This leads directly to the equations of motion which we shall investigate shortly. 
 

Dynamics of the physical pendulum 
 
The aim of this experiment is to compare the actual dynamical behavior of a real physical 
pendulum with a mathematical simulation.  To this end, we need to characterize the pendulum 
properties as accurately as possible and incorporate these into the appropriate equations of 
motion. 
One approximation will be involved: the motion will be assumed frictionless.  This 
simplification is driven principally by the lack of any very elegant fundamental theory although 
it would actually be fairly trivial to incorporate velocity-dependent damping in the dynamical 
modeling. 
 
The moving parts for the real pendulum are: 
 
 2 primary axis bearings 
 2 primary arms 
 2 secondary axis bearings 
 2 secondary axis spacers 
 1 secondary axis cap screw 
 1 secondary axis hex nut 
 1 secondary arm 
 
The vendor for this apparatus, chaoticpendulums.com, has conveniently provided the dimensions 
for these parts as shown in Figure 3.  Note that all dimensions are in millimeters.  The required 
spatial mass moments can be calculated analytically for each item.  The contribution that each 
one provides to the kinetic and potential energies is given below.  For future reference, the 
distance between the primary and secondary axes is denoted 1l  and equals 173 mm.   

 
Bearing:  A bearing facilitates low-friction axial rotation shear while constraining the shaft 
location.  Thus, the inner race of the bearing can be rotating with angular velocity,  , while the 

outer race is rotating with an angular velocity of  .  To keep the modeling of this component 

simple, it is assumed that the bearing is homogeneous with a rotation rate at radius, r,  that is 
linearly interpolated by the distances from the inner and outer radii.   
 
Primary axis bearing: 
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Secondary axis bearing: 
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Primary arm: 
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Secondary axis components: 
 
The cap screw, spacers and hex nut are all constrained to rotate rigidly with the secondary arm. 
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Secondary arm: 
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Thus, the Lagrangian can be represented by: 
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The canonical momenta can be calculated from the Lagrangian: 
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The Hamiltonian is given by: 

 
  

1 1 2 2

2 2
11 1 12 12 2 1 1 2 22 2 1 1 2 2

1 1

2 2
 cos  cos  cos

H p p L

a a b a c c

 

       

  

      

 

     

By replacing i  by ,ip  one can convert the Hamiltonian into a form that depends only on i  and 

ip .   

 

 

22 1 2
1 2

11 22

1 11 2
2 2

11 22

12 12 2 1

 

 

 

 

and

 cos 

a p bp

a a b

bp a p

a a b

b a b





 





 




  




 

Thus: 

 
  

  

2 2
22 1 12 12 2 1 1 2 11 2

1 1 2 22

11 22 12 12 2 1

 2  cos  1
cos  cos

2   cos

a p a b p p a p
H c c

a a a b

 
 

 

   
  

  
 

 
The coupled equations of motion follow:  
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Figure 3.  Double pendulum dimensions. 

 
 

 



University of Michigan  Department of Physics 7

Dynamical stability and Lyapunov exponents 
 
In this experiment, we would like to explore how sensitively the dynamical evolution of a system 
depends on the initial conditions.  Do small perturbations lead to small variations or huge ones?  
As a starting point, consider a one-dimensional system whose evolution is governed by: 
 

   q f q t  

 
Suppose we want to find out how q will evolve for slightly different initial conditions in the 
neighborhood of qo: 
 

      o
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q f q t f q t q

q


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
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Thus, in the limit, 0,q   

 

   ( ) 0t
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q t e q

q q
 

    
 

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The value, λ, is the Lyapunov exponent at qo.  If it is greater than zero, the evolution of the 
system diverges exponentially with time, preventing all attempts to compute the motion at 
arbitrary times.   
 
We can take this example to the next level of complexity by considering the simple pendulum.  
The Lagrangian for this system is: 
 

 2 21

2
cosL T V m r m u g        

 
The canonical momentum is:  
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
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and thus the Hamiltonian is: 
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We would like to find out how the motion evolves for small perturbations from the initial 
condition specified by θ0 and p0. 
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This can be represented by the matrix equation below: 
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We seek solutions of the form: 
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where (0)q a b p      is an eigenvector for the matrix with an eigenvalue, λ, and thus 

( ) (0)tq t e q  . To find λ, the following equation must be solved:   
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For this particular case, the resulting equation is: 
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For ,
2

   the values of λ are imaginary.  However, for ,
2

   one of the values is positive and 

real, leading to divergent growth.  The eigenvalues and eigenvectors (normal modes) are thus: 
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To understand the long term behavior of the system, one must average the Lyapunov exponents 
over the dynamical path in the phase space.   
 
It is worth remarking about a generic property of Lyapunov exponents stemming from the 
Hamiltonian description.  The Jacobian matrix that transforms the phase space volume,  

1 1 2 2  p p     must have the form:   
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The diagonal elements of this matrix cancel in pairs so that the trace of J is zero.  This guarantees 
that the sum of eigenvalues, ie. the Lyapunov exponents, is also zero.  The physical implication 
of this is the invariance of phase space volume for a conservative system.  For a dissipative 
system, this would not be true.   
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This analysis can be extended to the double pendulum although the expressions become 
algebraically messy.  In this case, we will only be interested in obtaining numerical solutions. 
 
The Jacobian matrix for this problem is a 4 × 4 array:   
 

 

11 12 13 14
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 
 
 

 

 
By defining the following intermediate quantities, the matrix elements can be computed fairly 
easily.  (See previous parameter definitions.) 
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The individual matrix elements are given by: 
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j
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r
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s
   

 21 1 1 cosj c dq    

 22 11j j   
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   1 12 2 1

33 2

 2   sins p r u b
j

s
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   

 11
34

a
j

s
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 41 23j j  

 42 13j j   

 43 2 2 cosj c dq    

 44 33j j   

 
In general, the characteristic equation defining the eigenvalues would be fourth-order in λ.  The 
traceless nature of J requires the cubic term in λ to vanish and similar other symmetries imposed 
by the Hamiltonian origin squelch the linear term as well.  Thus, the defining equation for the 
eigenvalues takes the form:  
 

  22 22  0b c     

 
and thus: 
 

 2 2b b c      
 
where: 
 

 
  2 2

11 33 12 21 34 43 23 32 24 42
1

2
    

Det 

b j j j j j j j j j j

c J

      


 

 
The values for 2 may be complex. 
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Equipment 

Double pendulum: The centerpiece of this experiment is a double pendulum purchased from 
www.chaoticpendulums.com. (If you would like one of your own, the price was listed at $150 
plus shipping on April 2010.) The unit is fastened to a ⅛” thick steel plate 46” above the floor. 
The detailed mechanical parameters are listed in Table I. The steel plate provides a convenient 
surface for attaching a variety of magnetic base accessories for repeatedly releasing the 
pendulum from specific positions and recording the resulting motion. Please use some care in 
placing these gadgets so they don’t slam onto the enameled surface. 
 

 

Figure 4. The double pendulum arms held at θ1 = 135º, θ2 = 90º by two 
solenoids. The phosphorescent screen is in the lower right corner and the 
flash gun can be seen in the foreground. 

 
Solenoid releases: Two solenoid assemblies are available to hold each arm of the double 
pendulum at a fixed predetermined location prior to release. The plungers must be pulled out 
manually to hold the arms. Note that the two solenoid assemblies are not quite identical – each 
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arm requires a specific spacing of the solenoid from the vertical steel mount plate. The power to 
activate the solenoids is provided by an electronics enclosure that is triggered by a timing unit. 
 
Electronic flash gun: The angular coordinates of the double pendulum arms are captured at 
preset times by a short duration burst from a LumoPro LP120 manual flash unit. This device was 
chosen because the vendor was reasonably willing to provide information about trigger 
requirements. The unit is battery-powered so the appropriate switches must be turned on to 
activate. Set intensity switches to NEXT and 1/8 to optimize flash duration and brightness. Please 
also make sure to switch unit off before you leave. The LP120 takes about 10 seconds or so to 
charge as indicated by a small red LED near the on/off switch. If longer, swap rechargeable 
batteries. 
 
Phosphorescent screen: With the bright light from the flash gun, the angular positions of the 
double pendulum arms can be recorded by phosphorescent screens, either 12” ä 12” or 6” ä 6” in 
area. This will only work in a darkened room. The image decay time is of the order of 30 
seconds. This provides a reasonable opportunity to measure the shadows of the pendulum arms. 
In case of any need for replacements, the screen material is ZnS vinyl film and was obtained 
from Educational Innovations, Inc. and Hanovia Specialty Lighting. 
 

 

Figure 5. The shadow image of the double pendulum caught by the 
electronic flash gun. 
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Angle gauge: An electronic Wixey digital angle gauge is available to measure the angles of the 
pendulum components before release and the positions indicated by the shadows on the 
phosphorescent screens afterwards. An aluminum and steel holder will help determine the 
location of the pendulum arms prior to release and a PVC plastic block will help determine the 
angles indicated by the shadows on the phosphorescent screens. The gauge reference angle must 
be initialized so that zero angle coincides with the vertical. The resolution of this device is 0.1º. 
 

 

Figure 6. Measurement of the primary arm
angle. (Please keep a hand on the gauge so
that it doesn’t accidentally fall.) 

 Figure 7. Measurement of the secondary 
arm angle. (Please keep a hand on the 
gauge so that it doesn’t accidentally fall.) 

 
Red flashlight: A Celestron night vision red LED flashlight is available to read the Wixey angle 
gauge without bleaching the phosphorescent screen image. A rotating thumbwheel turns the 
device on and adjusts the intensity of light. Turn off when not in use. 
 
Photogate timing device: A Vernier photogate is
available to measure the oscillation period of the
double pendulum under restricted conditions. This
permits some simple checks of the mechanical
parameters that determine the equations of motion.
A beam alignment rod should be used to help
position the photogate so that the unit triggers near
the zero angle point of the pendulum arm. 
 

 

  Figure 8. Use of beam alignment rod to 
position the Vernier photogate. 

 
Leveling table: A small leveling table is available to help set the reference angle for the Wixey 
digital gauge. Adjust the three leveling screws so that the 2” diameter steel ball has no tendency 



University of Michigan  Department of Physics 15

to roll in any specific direction. This should determine the level to about 0.1º. You can do 
slightly better by nulling the Wixey gauge at this position and then rotating the gauge by 180º 
around a vertical axis. If this is a true level, the gauge will continue to indicate 0º. If not, 
compensate by small rotations of the leveling screws. Rotate by 90º and repeat. A small steel 
block has been provided to set the zero reference to true vertical. 
 

 

Figure 9. Leveling table with 2” diameter
steel ball. Adjust screws until ball position
is neutral. 

 Figure 10. Leveling table with steel block 
to set the Wixey digital angle gauge 
reference direction to vertical. 

 
Timing system: An ORTEC model 871 timer and counter NIM
module performs the task of controlling the timing sequence 
that releases the double pendulum solenoids and fires the flash
gun after a preset time interval. The solenoid release is initiated
by the signal labeled INTERVAL and the flash gun is triggered
by END OF PRESET. Both of these signals must be connected 
by BNC cables to the electronic enclosure mentioned earlier.
An internal clock is available to provide flash gun delays from
0.1 to 1.0 second in 0.1 second increments and from 2 to 10
seconds in 1 second increments. The module as shown in Figure 
11 is set for an interval of 2 seconds. For any other delays, the 
timing can be determined by an external clock signal plugged
into the EXT CLOCK BNC jack in the rear panel of the module
and TIME BASE SELECT set to EXT. The count interval must 
also be set appropriately. For example, a 10 KHz external clock
and a preset count of M = 3, N = 4 will generate a 3.0 second 
delay sequence. Press STOP, RESET and COUNT to activate 
the solenoids holding the pendulum arms and fire the flash lamp
at the end of the preset time. 

 

 Figure 11. ORTEC timer & 
counter module. 
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External function generator: An H-P 33120A function generator should be used to furnish an 
external clock signal to the ORTEC 871. The waveform must be set to square wave. Set Ampl to 
2.000 V RMS, Offset to 1.5 V, and % Duty to 20 % (To access the % Duty function, press the 
Shift button.). For intervals of the order of 1 second, use frequencies of the order of 25 KHz. 
 

Double pendulum mechanical parameters 
 

Parameter Value Units 

g 9802.894276 mm s-2 

l1 173.000000 mm 

< m1 · u > 10123.312735 g mm 

< m1 · r
2 > 1262802.391807 g mm2 

m2 110.362483 g 

< m2 · u > 8200.761340 g mm 

< m2 · r
2 > 919788.854796 g mm2 

mb 7.369667 g 

< mb · r
2 >-- 48.200077 g mm2 

< mb · r
2 >-+ 55.763811 g mm2 

< mb · r
2 >++ 205.992010 g mm2 

ms 2.014000 g 

< ms · r
2 > 30.371120 g mm2 

mc 3.704000 g 

< mc · r
2 > 27.089327 g mm2 

mn 0.291000 g 

< mn · r
2 > 5.366072 g mm2 

Table I. Kinematic parameters for the double 
pendulum. These values may be cut and pasted 
from the file, pendulum_params.xls. 

  
Validation tests 

 
The physical parameters for the double pendulum used in this experiment are listed in Table I.  
The various mass moments were computed analytically from the relevant dimensions.  To check 
whether these values adequately describe the system, one can constrain the two pendulum arms 
in various ways and accurately measure the small amplitude periods.  These correspond to the 
following configurations: 
 

a.  Hold the primary arm fixed and measure the oscillation frequency of the secondary arm. 
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b.  Hold the secondary arm fixed inside the primary arm using a #8 elastic band near the 

primary axis. 
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c.  Hold the secondary arm fixed to and extended beyond the primary arm using two #8 

elastic bands and a small rectangle of box board as a stiffener. 
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c c
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The periods and thus the oscillation frequencies can be accurately measured with a Vernier 
photogate interfaced to the computer. 
 

 

  

Figure 12. Pendulum period
test configuration (a). 

 Figure 13. Pendulum period
test configuration (b). 

 Figure 14. Pendulum period 
test configuration (c). 

 
Numerical simulation of the double pendulum 

 
The previous measurements should validate the pendulum parameters to the accuracy of the 
order of 0.1%.  The next step is to use these values to predict the pendulum behavior over a finite 
range of time of the order of 10 seconds.  The most convenient numerical technique is Runge-
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Kutta integration.  The input is a 4-vector of initial conditions, (θ1, p1, θ2, p2) and a vector set of 
functions that predict the first-order time derivative of each dynamic variable as a function of 
these four quantities.  Use time steps of the order of 0.001 s to ensure accurate estimations. 
 
I have used the IDL numerical analysis package to compute and plot the behavior of this double 
pendulum system as depicted in Figures 15, 16, and 17. This requires two or three dozen lines of 
code. I expect that most students are more likely to have experience with MatLab. Program 
scripts for both IDL and MatLab are available on the Physics 441/442 Web site. For IDL, you 
will need d_chaos.pro, d_pend.pro and lyapunov.pro. MatLab requires d_chaos.m, d_pend.m, 
lyapunov.m and rk4.m (The last file performs Runge-Kutta integration. This code is already 
embedded in IDL.) In the course of this experiment, you will be required to perform additional 
calculations to explore the chaotic motion but these routines should be a useful starting point. 

 
 
Figure 15.  Graphs of θ1(t), p1(t), θ2(t), p2(t)  for θ1(0) = 10º, θ2(0) = 10º.  The red, green and blue 
lines show the behavior for three initial conditions for θ1 and θ2 that vary by 0.01 radians. 
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Figure 16.  Graphs of θ1(t), p1(t), θ2(t), p2(t) for θ1(0) = 105º, θ2(0) = 105º.  The red, green and 
blue lines show the behavior for three initial conditions for θ1 and θ2 that vary by 0.01 radians.                    
The lower two graphs show the Lyapunov exponent along the central trajectory. 
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Figure 17. Graphs of θ1(t), p1(t), θ2(t), p2(t) for θ1(0) = 135º, θ2(0) = 90º.  The red, green and blue 
lines show the behavior for three initial conditions for θ1 and θ2 that vary by 0.01 radians. The 
lower two graphs show the Lyapunov exponent along the central trajectory. 
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Experimental observations 
 
The main goal of this experiment is to examine the behavior of the double pendulum as a 
function of initial conditions using both computational and experimental techniques. A useful set 
of initial conditions to explore is (θ1 = nπ/12, p1 = 0, θ2 = nπ/12, p2 = 0) where n is an integer in 
the range from 3 to 9. For small values of n, the experimentally measured pendulum positions 
will track the calculations accurately and the dispersion of values at fixed time will be small. As 
n gets larger, the differences between the measured and computed displacements will grow, 
followed by increases in the dispersions at fixed times. The technique for these measurements is 
to set up the electronic flash lamp to trigger at the desired time delay after solenoid release and 
then immediately place the Wixey angle gauge and block on the phosphorescent screen to read 
off the pendulum arm positions at the time of flash. (See Figures 18 & 19 below.) To determine 
dispersion, measure θ1 and θ2 for ten identical releases from the same initial conditions and 
compute the standard deviation. You need to be aware that for large values of n, the secondary 
pendulum arm can easily have executed one more or one less complete rotation, making 
dispersion estimates unreliable under these conditions. For motion in the chaotic regime, plot the 
log of dispersion as a function of time. 
 

 

Figure 18a. Wixey digital angle gauge and retainer block for
measuring shadow angles on the phosphorescent screen. 

 Figure 18b. Angle gauge 
zero reference position. 
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Figure 19a. If the digital gauge is to the 
right of the corresponding axis: 
θ1 = 180º - XX.X; θ2  =  180º - YY.Y. 

 Figure 19b. If the digital gauge is to the 
left of the corresponding axis: 
θ1 = - XX.X; θ2 = - YY.Y. 

 
The dispersion of phase space trajectories should be simultaneously explored with numerical 
techniques. Vary a particular initial condition for (θ1, p1, θ2, p2) by (δθ1, 0, δθ2, 0) where δθ1 and 
δθ2 are Gaussian distributed random errors with standard deviations of the order of 0.0005 
radians. If you only have access to a uniform random number generator over the interval, [0 ≤ r ≤ 
1], use rGauss = r1 + r2 + … + r11 + r12 – 6. Generate a hundred or so trajectories to compute the 
dispersion. Compare these results qualitatively with the corresponding experimental 
measurements. 
 
I noted that the experimentally measured dispersions were not always very stable in value, even 
if the mean positions were quite reproducible. That may be an artifact of the strong possibility 
that Gaussian initial errors do not propagate to Gaussian trajectory dispersions. This is an open 
question for the moment that could be explored by computational methods. 
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Relation to Fractals and Other Complex Behavior 
 
Although the double pendulum does not give rise to interesting geometric behavior, the general 
computational procedure often produces surprising results. The figure below was taken from a 
recent New York Times Web blog by Steven Strogatz. The image depicts the behavior of 
Newton’s method for iteratively computing the solution to z3 = 1. The color of each point in the 
figure indicates which of the three roots will be approached from that particular point in the 
complex plane. 

 
 
Figure 20. A map of the complex plane with -1 ≤ Re(z) ≤ 1 and -1 ≤ Im(z) ≤ 1. The three colors 
designate which complex root will be found by iteration of Newton’s method for the solution of 
z3 = 1. See S. Strogatz. 
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Useful mathematical formulas: 
 

   
0 0

2 2 2 21
 

3

a b
x y dx dy a b ab     

 
 

2 2 2
2 2 2 2 2

0 0 0 0 0 0
0 0

( ) ( ) 16 ( ) 3 2 ( )
24

( ) ( )
r r x r
dx x x y y dy x y r r x y


           

 
 

2 2

( ) ; ,
22

a a b b
a bi c d i d c

d

  
       

 
 

References 
 

1. Troy Shinbrot, Celso Grebogi, Jack Wisdom and James A. Yorke, Chaos in a double 
pendulum, Am. J. Phys. 60, 491-499 (1992). 

 
2. Tomasz Stachowiak and Toshio Okada, A numerical analysis of chaos in the double 

pendulum, Chaos, Solitons and Fractals 29, 417–422 (2006). 
 

3. Steven Strogatz, Finding Your Roots, New York Times, March 7, 2010. 


