
 

University of Michigan  Department of Physics 1

The Planck blackbody spectral distribution and 
measurement of the solar photosphere temperature 

 
Carl W. Akerlof 

July 27, 2009 
 

Introduction 
 

The characteristics of black body radiation are manifest in a variety of different contexts 
for both science and technology. At a time when energy sources and consumption have become 
issues of national concern, it is useful to look at some basic limits determined by quantum 
mechanics and thermodynamics. The experiment outlined here is an extension to the one I 
developed some years ago for Physics 341. The principle goal is to estimate the surface 
temperature of the Sun by measuring the photon intensity spectral distribution. This technique is 
of enormous importance for stellar astrophysics. The fact that one can probe the characteristics 
of physical systems at almost unimaginable distances is one of the triumphs of modern science. 
With careful measurements and good mathematical data reduction techniques, good results can 
be obtained with very few assumptions. 

 
Blackbody radiation and the Stefan-Boltzmann Law 

 
The first origins of quantum mechanics arose from the failure of classical methods to 

explain the spectral distribution of light from hot objects.  The experimental model system is a 
hot cavity such as an oven with walls at a uniform temperature T.  A small hole is cut into an 
oven wall to allow a small fraction of the electromagnetic energy to escape.  Such light is called 
blackbody radiation. 
 

Statistical mechanics plus classical electromagnetism predicted a spectral distribution 
called the Rayleigh-Jeans law that can be written as: 
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where I is the intensity (power per unit area) of light emitted per unit frequency at frequency f  
by an object at temperature T. Although the derivation of this formula is beyond the scope of this 
course, the form can be easily explained.  In classical statistical mechanics, every possible degree 
of freedom should acquire an average energy of ½ kT. For example, a monoatomic gas molecule 
has (3/2)kT energy because it can move in three independent directions. The number of 
independent modes of oscillation in a cavity scales like f 2 for reasons similar to the relationship 
of the area of a sphere to its radius. The total intensity at a given frequency is just the product of 
the number of modes available and the average energy in each one.  This is the physical content 
of Equation 1. 

From a practical point of view, Equation 1 is a disaster.  As the frequency, f, becomes 
large, the predicted intensity increases without limit, even for objects at modest temperature. 
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This is called "the ultraviolet catastrophe". On the other hand, at low frequencies, the formula 
gave accurate predictions of experimental results, indicating that at least some aspects were 
basically correct. 
 

The problem was solved in two steps.  Since Equation 1 leads to an infinite radiation rate, 
another approach must be found to compute the total energy emitted by a hot object. Ludwig 
Boltzmann found a thermodynamic argument to show that the total intensity is given by: 
 

4TI σ=                                                                   (2) 
 
where σ is a constant of nature and T is the absolute temperature.  This agreed with earlier 
experimental measurements by Josef Stefan.  Equation 2 is called the Stefan-Boltzmann Law - 
the unusually rapid increase in radiation with temperature is a consequence of the massless 
nature of photons, the carriers of electromagnetic energy (the same kind of behavior governs 
phonons, the quanta of acoustic energy in solids and liquids). 

Although this relationship describes the total energy emitted, it does not predict the spectral 
distribution.  That step was taken by Max Planck who postulated that electromagnetic energy 
was emitted in discrete units or quanta, each with energy given by hf where h is the Planck 
constant, 6.6261 x 10-34 joule-second (see Table I).  For photon energies with hf > kT, it would 
no longer be possible to populate each mode with kT average energy since a fraction of hf is no 
longer allowed.  The consequence is an additional factor of  
 

1
/

/ −kThfe
kThf  

that reduces the spectral distribution given by Equation 1.  This factor approaches unity for small 
f, preserving the long wavelength Rayleigh-Jeans behavior but squelches the ultra-violet 
divergence.  The result is the Planck spectral distribution: 

1
12

/2

3

−
= kThfec

fh
df
dI π                                                    (3) 

 
By integrating this equation over all frequencies, one can recover Equation 2 and, in addition, 
find that the constant, σ, is explicitly given by: 
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The integration of Equation 3 is accomplished by rewriting (3) as: 
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Since 
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per unit of time, area and frequency is given by: 
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This can be also integrated in a similar fashion to yield: 
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Dividing I by N , we find that the mean photon energy is 2.70117803 kT. A long list of similar 
characteristic parameters of the Planck distribution is provided in Appendix A. 
 

c  299792458 m/s  
e  191.602176487 10  C−×  
h  346.62606896 10 J s−×  
k  23 11.3806504 10  J ºK− −×  

σ  23 2 45.67040047 10  W m ºK− − −×

Rü 695990 km  

AU 81.49597870691 10  km×  
 

Table I.  Useful constants and parameters.  
 

Experimental strategy 
 

The basic goal of this experiment is the determination of the solar surface temperature 
from the relative intensities of the spectrum sampled at a number of wavelengths from 450 to 
950 nm. The sampling is determined by a set of broadband interference filters that modulate the 
light intensity measured by the photocurrent in a reverse biased silicon diode. If the detailed 
characteristics of the filters and photodiode were all initially well known, a single set of 
measurements of sunlight through the filter set would suffice. In the absence of such information, 
the light from a tungsten lamp at different temperatures will be used to establish the appropriate 
calibrations. In addition, sunlight is also reddened by the atmosphere which differentially absorbs 
the blue end of the spectrum. This effect can be corrected by measuring the spectral intensities as 
a function of zenith angle. Finally, least squares techniques determine the solar temperature by 
modeling the data with the Planck spectral distribution function. 

 
Measuring light intensity 

 
The basic device for measuring light intensity in these experiments is a silicon diode 

wired so that the internal junction is reverse biased.  A silicon diode is the most elementary 
semiconductor structure one can construct. Schematically it looks like the sketch shown in 
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Figure 1.  In the upper region of the diode, electric current is transported by positive charge 
carriers called "holes"; in the lower region, the current carriers are negatively charged electrons.  
If this device is "reverse-biased" so that the upper electrode is more negative than the lower one, 
the charge carriers will separate as shown in Figure 2.  In this case, the positive "holes" will be 
attracted to the top and the electrons towards the bottom, leaving a "depletion layer" in the 
middle. Since almost no free electrical carriers are present there, the current through the diode is 
effectively reduced to zero.  With these circumstances, an incident light beam will produce 
electron-hole pairs in the depletion region and allow an electric current to flow once more.  The 
total charge conducted will be directly proportional to the number of incident photons absorbed 
and, for a well-designed photodiode, that ratio is of the order of unity.  The photodiodes for these 
experiments are mounted in small blue boxes and wired as shown in Figure 3. Measuring the 
photocurrent is fairly easy if the current is large enough. The Agilent U1252A multimeter will 
operate as an ammeter down to about 0.01 μA (10-8 A). 

 
 
 
 
 
 
 

Figure 1. Schematic view of a silicon 
pn diode. 

 
 

Figure 2. By reverse biasing a pn diode, a charge-free 
region is created at the pn boundary called the 
depletion layer. 

 
A note of caution: although the voltage output of a photodiode is related to the input light 

intensity, the relationship is far from linear.  For an open circuit (i.e. no current flow), the voltage 
is practically constant, independent of intensity as long as the light is bright enough to 
overwhelm the intrinsic electron-hole recombination rate. The terminal voltage under these 
circumstances is the bandgap potential which is 1.11 volts for silicon. The explanation for similar 
effects in metals was the scientific contribution for which Einstein was awarded the Nobel Prize 
in 1921. Do not use the multimeter in voltage mode to measure light intensity! 
 

Figure 3. Wiring diagram for the
photodiode box. 
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Tungsten light source 
 

The calibration light source for this experiment is a #1446 miniature screw base tungsten 
filament lamp that operates at a nominal 12 volts and a current of 0.2 amperes. It was chosen for 
its relatively high resistance, easy replaceability and low cost. By operating with a DC power 
supply, the filament temperature is held constant, important for reliable measurements. For 
estimating temperatures, the power consumption of the lamp must be carefully measured.  This 
requires knowing both the electric current passing through the tungsten filament and the voltage 
across it. The resistance of the lamp can be used to estimate the filament temperature since the 
resistivity increases in a well-known way as the metal gets hotter as tabulated in Table II. The 
Hewlett-Packard E3632A power supply is convenient for these measurements since the output 
voltage and current are monitored and displayed. To operate the supply, turn on the power with 
the Power On/Off pushbutton, enable the supply with the Output On/Off button and select the 
voltage range with the Range 30V, 4 A button. Do not exceed 20 volts across the lamp when used 
as a filter calibration source. 

 
 

Figure 4. Arrangement of lamp, shield, filter and photodiode sensor 
 

Filter calibration procedure 
 

Set up the tungsten lamp, light shield, filters, power supply and Agilent multimeter as 
shown in Figure 4. The basic plan is to measure the photocurrents at six temperatures with six 
different interference filters. The filament temperatures will be determined by calculating the 
operating resistance relative to room temperature and applying corrections imposed by the 
Stefan-Boltzmann Law. This means that the room temperature resistance of the tungsten lamp 
must be measured accurately. An Agilent 34401A multimeter is available for this purpose. Since 
the filters transmit a fairly small fraction of the total spectrum, it is a good idea to keep as much 
stray light from the photodiode as possible. For this reason, place a large aluminum screen with 
the hole centered on the light path between filament and diode. For each filter, the optical 
bandpass center wavelength is marked on the upper edge of the holder. Operate the lamp at six 
different voltages: 7.5, 10.0, 12.5, 15.0, 17.5 and 20.0. The later three exceed the design limits 
for the lamp so try to keep these exposures as short as possible. For each voltage/filament 
temperature, make note of the power supply voltage and current. These will be needed to derive 
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the filament temperature. You should also measure the lead wire resistances with the Agilent 
34401A to correct for power loss in the connecting wires. 

 

 
Figure 5. Arrangement of tungsten lamp, light shield, filter and photocell
for calibration measurements. 

 
 The next step is to estimate the actual operating temperature for each of the six voltages. 
By this time, you should have found the total resistance for the two lamp current wires and the 
room temperature value for the filament itself. From the voltage and current provided by the 
power supply, corrected for lead losses, you can then determine the filament resistance at the 
operating temperature and from its ratio relative to 293º K, find the actual temperature. An Excel 
file, solar_template.xls, is available to perform the appropriate interpolation from a table of 
resistance values.  
 
 To model the set of photocurrents measured for the various temperatures and 
wavelengths, we need to make a few assumptions and then define a set of parameters to be 
determined by the data. The most critical assumption is that the light emitting region of the 
filament remains constant, independent of temperature. This is probably not strictly correct but is 
at least a reasonable approximation. The photocurrent observed with each filter will then be the 
product of the Planck spectral distribution at that wavelength or frequency, the filter relative 
transmission probability and an overall amplitude related to the area of the filament and beam 
geometry. Since the filter transmissions are relative, one of them must be held to an arbitrary 
value such as unity. That means that there are six independent parameters to be determined by 
applying the least squares method to minimizing the difference between observed and fitted 
values. Since the data range over quite a large span of values, it is best to define the least squares 
sum in terms of the relative error of each pair of observation and fit. I used the Excel Solver tool 
to accomplish this function – for other mathematical packages, you’re on your own. 
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Checking the Stefan-Boltzmann Law 
 
 You probably have already verified the Stefan-Boltzmann Law in Physics 341. However, 
since we are willing to sacrifice a light bulb to the cause of science, you can explore a somewhat 
wider range of temperatures with the apparatus at hand. In this case, vary the power supply 
voltage from 6 to 30 volts in steps of one volt and measure the associated current. Compute the 
lamp filament temperature from the ratio of resistance relative to room temperature. Fit the lamp 
power to a power law in temperature and compare the exponent with the Stefan-Boltzmann value 
of 4. The obvious consequence of pushing the power output of the lamp way beyond its design is 
irreversible blackening of the glass bulb due to evaporation of the filament, ultimately leading to 
failure. Thus, once a lamp is exposed to such extreme treatment, it should not be used for filter 
calibrations again. 
 

Measurements of the solar photospheric temperature 
 
 There are two aspects of the solar radiation that can be easily measured: the spectral 
distribution and the light intensity. Both of these can be used to estimate the solar surface 
temperature. To perform the required measurements, you will need all the same equipment used 
for calibration but without the power supply and the tungsten lamp. It is best to perform at least 
one measurement near solar transit. The terrestrial coordinates for the Block M on the Diag are 
42º 16.621′ N, 83º 44.292′ W, 280 m altitude. This means that solar transit occurs approximately 
at 12:35 pm EST or 1:35 pm EDT. It is easy to check this estimate: the campus buildings are 
oriented due north-south and east-west so you can verify if the solar shadows line up accordingly 
at the predicted time. A convenient place to set up the apparatus is the north-west corner of the 
courtyard between Randall and West Hall. The bench surrounding the skylight can be used as a 
table and you can check the zenith angle value by measuring the shadow cast by the surrounding 
protective railing. The proper aim towards the Sun can be obtained by ensuring that sunlight 
passes cleanly through the hollow optical bench rails. Measure the photocurrent for all six filters, 
making sure to also obtain associated sky backgrounds by aiming the system five or ten degrees 
off-source so that direct sunlight does not illuminate the photocell. 
 
 The atmosphere poses one problem that is not an issue in the laboratory, the absorption 
and scattering of light. This is wavelength dependent, preferentially depriving direct sunlight of 
photons at the blue end of the spectrum. Astronomers refer to this as atmospheric extinction and 
measure it in the rather quaint units of magnitude. The transmission through a medium with m 
magnitudes of extinction is 10-0.4 m – thus, 5 magnitudes will reduce the flux by a factor of 100. 
For observing celestial objects, the extinction will increase proportional to the air mass through 
which the light traverses so that the effective extinction scales like m0/cos(θ) where m0 
corresponds to the extinction at zenith. If the weather is suitable, not something that one can 
count on in Ann Arbor, it would be nice to measure the extinction directly by taking at least three 
separate sets of measurements that span a factor of two in air mass, ie. the ratio of values for 
cos(θzenith). The solar zenith angles can be calculated via the interactive Web program at 
http://www.nrel.gov/midc/solpos/spa.html. If the weather does not cooperate, use the estimated 
values provided in Table V. 
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Figure 6. Light shield, filter and photodetector arranged for solar
radiometry measurements. 

 
 
 To find the solar temperature, model the photocurrent dependence on wavelength and 
temperature using the Planck spectral distribution, the filter transmissions found earlier, and the 
atmospheric extinctions discussed above. There are two free parameters: the solar temperature 
and an overall normalization amplitude. Use Solver or some similar optimizer to minimize the 
relative error between measurement and model. 
 
 A second independent method is to estimate the solar temperature directly from the 
measured photon flux. In this case, you need to assume the solar surface area, the distance to the 
Sun and the parameters for the detection apparatus, given in Tables III and IV. Try this for the 
λ = 650 nm observation since this wavelength is least affected by various uncertainties in 
atmospheric attenuation. Note that the photodiode is exactly 1 cm2 in area. (Warning: note that 
the photocurrent is proportional to photon number, not photon energy.) 
 

Economic implications of the Planck distribution 
 
 Assume that all incandescent tungsten lamps operate at the temperatures encountered 
while calibrating the filters for this experiment. Since incandescent lamps must have a reasonable 
lifetime before burnout, T > 2350° K is a typical compromise for an operating point. For human 
vision, the useful photon wavelengths range between 450 and 650 nm. Find the fraction of 
energy within this segment of the blackbody spectrum relative to the total emitted 
electromagnetic radiation. (Hint: Numerically integrate Equation 3 using the parameterization 
described by Equation 5.) What are alternative electrical lighting technologies and why are they 
better even if more expensive to manufacture? 
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 Solar cells generate electrical energy that can be estimated by the product of the cell 
bandgap energy and the number of photons absorbed with quantum energies above the bandgap. 
For a specific temperature of the blackbody radiation, the output will be optimized when the 
bandgap is 2.166 kT. Find the optimal bandgap energy and the maximum output energy 
efficiency of a solar cell under these conditions, assuming a solar surface temperature of 
5778° K. Remember that the maximum power that can be usefully delivered by any kind of 
power source, solar or otherwise, is one half the energy generated (the other half must be 
dissipated internally). For the mathematically inquisitive, find the appropriate equation that 
determines the optimal bandgap voltage quoted above. The yearly electrical consumption in the 
United States is in the neighborhood of 1.5 ä 1019 Joules. How many square kilometers of fully 
efficient solar cells would be required to meet this demand? The total solar flux at the Earth can 
be estimated from the solar radius and the radius of the Earth’s orbit. 
 
 
 
 
 
 
 
 
 

Temp R/R293K Resistivity Temp R/R293K Resistivity 
K  μΩ-cm K  μΩ-cm 
293 1.00 5.48                             
300 1.03 5.65 2000 10.34 56.67 
400 1.47 8.06 2100 10.96 60.06 
500 1.93 10.56 2200 11.58 63.48 
600 2.41 13.23 2300 12.21 66.91 
700 2.94 16.09 2400 12.84 70.39 
800 3.47 19.00 2500 13.49 73.91 
900 4.00 21.94 2600 14.14 77.49 

1000 4.55 24.93 2700 14.79 81.04 
1100 5.10 27.94 2800 15.46 84.70 
1200 5.65 30.98 2900 16.12 88.33 
1300 6.22 34.08 3000 16.80 92.04 
1400 6.79 37.19 3100 17.47 95.76 
1500 7.36 40.36 3200 18.16 99.54 
1600 7.95 43.55 3300 18.85 103.30 
1700 8.54 46.78 3400 19.56 107.20 
1800 9.13 50.05 3500 20.27 111.10 
1900 9.74 53.35 3600 20.99 115.00 

Table II. Resistivity for tungsten as a function of temperature. (From PASCO Web site.) 
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Color λ 
(nm) 

Δ λ 
(nm) 

Trans- 
mittance

f 
(Hertz) 

Δf 
(Hertz) 

E=hf 
(eV) 

blue 450 40.1 0.690 6.662 x 1014 5.945 x 1013 2.755 
green 550 40.1 0.748 5.451 x 1014 3.982 x 1013 2.254 

red 650 35.8 0.828 4.612 x 1014 2.542 x 1013 1.907 
deep red 750 40.0 0.500 3.997 x 1014 2.133 x 1013 1.653 
near IR 850 40.0 0.450 3.527 x 1014 1.661 x 1013 1.459 

IR 950 40.0 0.450 3.156 x 1014 1.329 x 1013 1.305 

Table III. Interference filter parameters 

 
 
 

λ 
(nm)

quantum 
efficiency

300 0.413 
350 0.504 
400 0.547 
450 0.646 
500 0.748 
550 0.824 
600 0.846 
650 0.852 
700 0.855 
750 0.852 
800 0.843 
850 0.832 
900 0.814 
950 0.783 
1000 0.709 
1050 0.450 
1100 0.180 

Table IV:  Hamamatsu S2386-5K photodiode quantum efficiency 

 
 
 

λ m0 
950 0.20 
850 0.24 
750 0.35 
650 0.40 
550 0.51 
450 0.67 

 
Table V. Atmospheric extinction estimated for Ann Arbor 
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Appendix A 
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