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Atomic and Molecular Spectroscopy 
 

 

Figure 1:  Spectroscopy schematic from Ocean Optics 

 
1. Introduction 

 
Much of our knowledge about atomic structure is derived from the way atoms emit or absorb visible 
light. When dispersed with a prism or a grating, the light from atomic processes is seen to consist of 
collections of very narrow, discrete “lines”, at wavelengths characteristic of the atoms involved. The 
discrete spectrum is a direct manifestation of quantization in atomic systems.  
 

In hydrogen, the regularities in the line spectra can be used to verify the quantized energy levels pre-
dicted by the simple Bohr model. More complicated atoms display numerous additional effects, in-
cluding the screening of the nucleus by inner shell electrons, the interaction of the electron spin with 
internal atomic magnetism, and the restriction to only those transitions allowed by certain “selection 
rules”.  
 

When atoms combine into molecules, additional energy terms arise from the vibrational and rota-
tional normal modes of the structures. Transitions between these states lead to a complex  
“band spectroscopy” which allows study of the inter-atomic potential and the elucidation of the 
chemical bond.  
 

All of these effects are found to be in complete accord with the Schrödinger theory, and bring us to a 
deep understanding of atomic structure and molecular structure. Beyond this, modern techniques re-
veal further small corrections associated with the quantum theory of fields, and some of the most 
precise measurements in science 
 

In this experiment you will measure the Balmer series, the “spin-orbit” coupling in sodium, and the 
spectrum of the N2 molecule. Your instrument is a compact, computerized spectrometer, built for 
applied and industrial settings, which is easy to use and characterize. 
 

Some brief enlargement on spectroscopic physics and technique is offered below, but this is the bar-
est minimum to get started. Atomic spectroscopy is a famous chapter in the history of physics, and 
there are numerous excellent treatments. Haken and Wolf and Eisenberg and Resnick are particularly 
lucid on the physics. 
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2.  The Spectroscopy of Hydrogen: the Bohr Model 

 
Figure 2 The Balmer series (from Haken and Wolf) 

 
Hydrogen atoms can be excited with an electrical discharge in vessel containing the gas at low pres-
sure. In the visible region, the line spectrum is the famous converging series, as seen in Fig. 2. In 1885 
the Swiss schoolteacher Balmer showed that the spectrum was well described by the geometric series 

  

! = G
n

2

n
2 " 4

#

$
%

&

'
(  

where G is an empirical constant. In 1889, Rydberg suggested that the Balmer formula was a special 
case of the expression 
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where 
  
n

1
 = 2 . The redefined empirical multiplier

 
R

H
 has come to be known as the Rydberg constant. 

In 1906 and 1908 Lyman and Paschen confirmed this expression by finding additional series (in the ul-
traviolet an infra-red) described by the same expression with 
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In 1913, Bohr invented a simple model of atomic quantization. If the angular momentum of circular 
orbits was fixed in units of h , the energy of the orbits would also be fixed, and indexed by a quantum 
number n, according to 
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In a transition between states
  
n

1 
and n

2
, the energy difference would be balanced by emission or absorp-

tion of a photon with wavelength given by the Planck formula 

 

  

!E = h" =
hc

#
= E

2
$ E

1
= $

me
4

2 4%&
0

( )
2

h
2

'

(
)
)

*

+
,
,

 
1

n
1

2
$

1

n
2

2

'

(
)

*

+
,  

so we have derived “from first principles” the Rydberg equation and the Rydberg constant. 
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The “modern value” of RH is given in order to convey the kind of precision that is typical of atomic 
spectroscopy. Note that, following convention since the days of early spectroscopy, the units of  “the 
Rydberg” are in terms of “wave number”, or inverse length.  
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The value of RH given above is actually the value that would be appropriate if the nucleus were “fixed” 
or, equivalently, of infinite mass.  In practice, the mass of the electron should be replaced by the “re-
duced mass”, m/(m+MP) , where MP  is the mass of the nucleus, in this case of the proton.  Thus the 
spectrum has a slight dependence on the mass of the nucleus.  It is easy to show that the frequency 
shift between hydrogen and deuterium is  
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where we approximate MD by 2MP.  Thus we can measure m/MP  by comparing the spectra of hydrogen 
and deuterium. 
 

Bohr’s derivation of the Rydberg formula using quantized atomic orbits is one of the landmarks of 
physical science.   Bohr’s is a classic calculation using very simple mathematics. You should follow the 
treatment in your references and learn to do it yourself. We now know that the more sophisticated 
Schrödinger treatment, solving for the electron wavefunction in the spherically symmetric Coulomb po-
tential, gets the same energy “eigenvalues”. In retrospect, Bohr’s simple model is not much more than 
dimensional analysis built around the quantum hypothesis. That fact that it works contains a deep lesson 
about the fundamental simplicity and solvability of nature. 
  

 
Figure 3 Hydrogen term diagram (Haken and Wolf) 

 
In the Schrödinger solution, we find that each electronic state is specified by three quantum numbers, n, 
l, and m.  The “principle quantum number” n specifies the radial form of the wavefunction and the en-
ergy, and is logically similar to index for the quantized “Bohr orbits”. The quantum number l is re-
stricted to the range   l ! n "1 , and specifies the angular part of the wavefunction and the total angular 



2/15/06 4                             Atomic and Molecular Spectroscopy 
 

 

momentum for the state:  
  
L = l(l +1) h .  The magnetic quantum number, m, specifies the projection 

of the total angular momentum on a given axis: 
      

  
L

z
= mh ,  with m = !l,  ! l +1,  .... ,  l !1,  l  

 
In the absence of an external magnetic field, we do not expect the energy of the state to depend on its 
orientation in space; states with different values of m therefore have the same energy and are said to be 
“degenerate”.  What is perhaps a bit surprising is that the energy is also independent of the angular 
momentum, l. This is an “accidental” consequence of the spherically symmetric, 1/r form of the Cou-
lomb potential. The energy levels of hydrogen depend only on n, and all of the states of different l and 
m for a given n are degenerate. 
  
This is all summarized nicely in a “term diagram”, as shown in Fig 3. The n values read up along the left, 
and the l values read across. Note that the energy only depends on the index n. Note also that the transi-
tions as specified always involve a change of one unit of angular momentum l. Because the states are 
degenerate, this “selection rule” does not show up in the radiation spectrum of hydrogen, but it will be 
of consequence elsewhere.  
 
In the experiment on Atomic Spectroscopy the Balmer series in hydrogen will be measured with a mod-
ern “industrial-grade” spectrometer, utilizing fiber optics, precision gratings, and a CCD based readout 
is used to measure the Balmer spectrum of hydrogen. The richness of the physics and the history can be 
followed in greater detail in Haken and Wolf, Chapter 8, or Eisberg and Resnick, Chapter 4.  
  
 
3. The Spectroscopy of Sodium: Splitting and Spin 
 

 
Figure 4 Three series from the sodium spectrum, including the famous Fraunhofer D lines 

(Haken and Wolf) 

 
a. Nuclear Screening and the Lifting of the Angular Momentum Degeneracy 
 

The distinguishing feature of the alkali atoms is a lone l =0 electron outside of all closed shells. Since 
closed shells are extremely stable, alkali spectroscopy is dominated by the behavior of this outermost 
“optically active” electron. The electric potential seen by this electron (at its Bohr radius) is the Cou-
lomb field of the nucleus screened by the spherically symmetric charge distribution of the inner shells. 
The net potential is still the Coulomb form, but with the nuclear charge reduced by the amount of the 
screening charge to give Zeffective ~1. With one active electron in a Coulomb potential with Z=1, we 
would expect electron wave functions, energies, and spectroscopy similar to that of hydrogen.     
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The measured energy levels of hydrogen, lithium, and sodium are shown in Fig. 5. The usual spectro-
scopic notation is employed here, with the angular momentum states specified by the letter s, p, d, f  for 
l = 0, 1, 2, 3. The hydrogen like behavior of the alkalis is seen most easily for lithium 
with large n and l. However, as n decreases, the smaller l states lie below the corresponding hydrogen 
energy levels. For sodium, the states way out at 6d and 6f are hydrogenic, but the deviations at small n 
and l  are even more pronounced.  
 

The departure from hydrogenic behavior is because only the states with large angular momentum keep 
the electron out at the large radius of the Bohr orbit, where the simple screening hypothesis obtains. As 
seen in Fig. 5, for smaller values of l, the electron orbits penetrate within the closed shells, the electron 
sees more of the nuclear charge, and is more tightly bound, lowering the Coulomb energy. To estimate 
the magnitude of this effect, one could start with the Z=1 hydrogen  

 

 

 

Figure 5 The diagram on the right shows electrons with smaller angular momentum penetrating to 
smaller radius and seeing more of the nuclear charge (Haken and Wolf). This leads to stronger bind-
ing, and lowering of the energy for the low l  states, as seen on the left.   

 
wave functions and energies for optical electrons, model the inner shell as a uniform spherical 

charge of magnitude –(Z-1)e, and calculate the energy perturbation as the average or expectation value of 
the screening Coulumb interaction:  
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A more self-consistent technique, due to Hartree, solves for new wave functions and iterates, 
and converges rapidly to good agreement with the observed energy levels. 
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b. Spin, Magnetic Moments, and the Spin-Orbit Interaction 
 

When the alkali spectrum is examined with high resolution, many lines are resolved into very closely 
spaced doublets. For instance, the famous sodium “D line” can be resolved into two lines with wave-
lengths 5896 and 5890 Angstroms. This small 0.1% “splitting” is evidence of the electron spin, and 
comes about because of the interaction of the spin magnetic moment with the internal atomic magnetic 
field. Since the spin can only point either “up” or “down” with respect to the magnetic field, a state can 
be “split” into two states of slightly different energy.  Transitions from the split state to an un-split state 
then give two spectral lines in close proximity, a doublet. 
 
The spin is a completely non-classical “internal” angular momentum for a particle, as if it were a mass 
rotating around an internal axis. In the familiar language of angular momentum in quantum mechanics, 
the spin quantum number, s, specifies the total spin angular momentum and its projection on one axis 
according to 

  

S = s(s+1) h

S
z
= m

s
h ,  with m

s
= !s,!s+1,...,s !1,s

 

 

For fundamental fermions, like the electron, s=1/2, and the projection of the electron spin on any z 
axis can have precisely two values  
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Just as if the electron were a classical ball of charge, its internal spin imbues it with a magnetic dipole 
moment, given by  
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where µΒ, the Bohr magneton,  is the quantized unit of magnetic moment 
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The quantity gs is called the “spin g-factor”, and gives the numerical measure of the magnetic moment 
in units of Bohr magnetons. For electrons, it is found experimentally that gs is very close to 2.  The rea-
son for this is connected with the nature of spin, and predicted by the Dirac theory. 
 

The electron magnetic moment interacts with any local magnetic field. So, what is the local field seen by 
an electron? In a hydrogenic atom, in the rest frame of the electron, the proton appears to whirling 
around in a Bohr orbit. This circulating positive current creates a magnetic field at the position of the 
electron, and then the classic “µ dot B” interaction leads to an interaction energy term: 
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The extra factor of ½ is due to the subtleties of a proper relativistic transformation back to the atomic 
rest frame, and is called the Thomas precession. Because the magnetic field is due to the relative rotation of 
the electron and the atom, its magnitude can be derived in terms of the orbital angular momentum (see 
references). The expression above term above can then be re-written as a “Spin-Orbit Interaction”: 
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Evaluation of this expression requires averaging the spatial dependence over the whole atom, weighting 
by the square of the wavefunction (as at the top of page 6). The size of the splitting is found to depend 
on the wavefunction as 
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As far as the number of values for ΔE, the projection of the spin along the direction of L or B can have 
only, and exactly, two values. Reverting to the simple expression in terms of B, the energy of the spin 
orbit interaction has just two values 
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We can think of this as the potential energy of the spin magnetic moment when it is either aligned or 
anti-aligned with the internal atomic magnetic field. This small energy is then either added or subtracted 
from the overall energy of the atomic state: for every state with l>0, there become two states, with 
slightly different energies, depending on the relative orientation of the electron spin and the orbital an-
gular momentum. 
 
 
c. The Addition of Angular Momenta, the Sodium Term Diagram, and Selection Rules 
 

Because it is the total angular momentum that is conserved in the absence of external torques, it is con-
venient to add the spin and orbital angular momentum into a combined value for a given state. The 
combined spin J = L +S is specified by the quantum number j, which can have the values j+s or j-s, 
and then, as usual 

  

J = j( j +1) h

J
z
= m

j
h ,  with m

j
= ! j,! j +1,..., j !1, j

 

 

In the usual spectroscopic notation, sodium (Z=11), has the configuration 1s22s22p63s1, and is thus hy-
drogenic with an optically active electron with ground state 3s. The 3p state has total angular momen-
tum either j =1/2 or j=3/2; these states are written as P1/2 and P3/2, and have slightly different energies 
due to the spin-orbit coupling. The D state has split j=3/2 or j=5/2, and so on. 
 
The sodium term diagram in Fig. 6 shows all of the effects we have been discussing. 
The states of lower l are lower in energy. One might expect the strongest transitions between the 
ground (3s) and first excited states (3p), and this is indeed the characteristic yellow light of a sodium 
lamp, and the famous D lines observed by Fraunhofer in solar absorption spectra. The D lines are one 
of the most celebrated examples of the fact that states with l>0 are split slightly according to their j val-
ues (for clarity this is shown only for the p states). This is direct evidence of the electron spin. 
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Figure 6 The term diagram of sodium (Haken and Wolf). 

 
A feature seen in this diagram, and not obvious for the case of hydrogen, is that the observed transi-
tions all obey the “selection rule”  !l = ±1. That is, transitions occur between states that differ by one 
unit of angular momentum. This can be understood very simply in terms of the necessity of conserving 
angular momentum in the emission of a photon, which has spin = 1! 
 

Alternatively, it can be shown that only states with   !l = ±1 can give rise to the oscillating dipole mo-
ment, which must show up at lowest order in the multipole expansion of the radiation field.  A very nice 
discussion of this can be found in Eisberg and Resnick Sec 8.7.  
  
4. Molecular Spectroscopy 
 

Thus far we have been mainly concerned with the emission from single atoms,  i.e., spectra character-
ized by sharp lines arising from the emission of photons of particular energies when an electron makes 
a transition from an excited atomic state to a lower energy state.  We will now look at the spectrum of a 
simple diatomic molecular system:  N2,   
 

A cursory inspection of the spectrum of molecular nitrogen (Fig. 7. illustrates what a well-aligned spec-
trum should look like)  reveals not isolated sharp lines but broad ‘bands’ of emission frequencies.  This 
more complicated spectrum is the result of excitation of the additional degrees of freedom that mole-
cules exhibit compared to single, namely the vibrational and rotational motion of the excited mole-
cule.  The emission due to electronic transitions is now convoluted with the spectral features associated 
with vibration and rotational excitations. 
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Figure 7 Left: "Band spectrum" of  N2 as recorded with the OO spectrometer. Right: Molecular energy vs. inter-
nuclear separation, with the various harmonic oscillator and rigid rotor states superposed (Eisberg & Resnick) 

 
The details of this arrangement are explained in the references, particularly Eisberg and Resnick, Herz-
berg, and Banwell;  however, it is easy to extract some overall features of the spectrum for an intuitive 
understanding.  Because the energies associated with vibrational and rotational degrees of freedom are 
quite different, we can easily distinguish these two types of excitation from each other in the spectrum. 
This separation is embodied more formally as the Born-Oppenheimer approximation (briefly, that the 
vibrational motion is only slightly perturbed by the rotational motion and vice-versa).  In this case we can 
treat the vibrational and rotational features of the spectrum as separate contributions superimposed on 
the overall electronic transition between molecular states: 
 

Let’s start with the vibration of the molecule.  A useful model for vibrational excitations is the quantum 
harmonic oscillator, which has energy levels given by: 
 
 

  
E

n
=h!

0
(n+ 1

2
)                                                                 

where n is the vibrational quantum number, an integer, and ω0 corresponds to the fundamental fre-
quency of the simple harmonic oscillator (SHO).  Transitions in which  Δn = -1 lead to an emission 
spectrum of equally spaced lines.  
 

Coming now to the rotational excitations, if you zoom in on one of the peaks in the comb of vibra-
tional lines you will see some fine structure.  This fine structure is replicated on top of each vibrational 
line. It arises from optical emission associated with transitions between the quantized energy levels of a 
rigid rotator: 

 
  
E

rot
=

h
2
J (J +1)

8! 2
I

 

 

where J = 0,1,2…,  h is Planck’s constant, and I is the moment of inertia of the N2 molecule.   Note 
that the energy levels of the rotational states given by this expression are not equally spaced.  
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5. Experimental Atomic Spectroscopy 
 
a. What you will measure 
 

• The Balmer series in Hydrogen 
• The Rydberg constant 
• The spectrum of deuterium and from it obtain the ratio of the electron to proton masses 
• The spectral lines of sodium and evidence for nuclear screening and selection rules 
• The fine structure splittings in sodium and evidence of electron spin 
• The spectrum of diatomic nitrogen molecules, revealing information on the chemical bond 
 
b. Spectrometry Basics 
 
i)  Dispersion via Gratings  
 

Our principle tool for separating light into discernable spectral lines is the diffraction grating.  
 

 
Figure 8   Various orders of diffraction from a simple grating (Jenkins and White) 

 
As seen above, in a figure drawn from the venerable optics book of Jenkins and White, the wavelengths 
are separated according to the grating equation: 

  m! = d(sin i + sin")  
 

Notice that as the order number m increases, the separation of nearby lines improves. This feature of 
the angular dispersion follows from the grating equation, and you will calculate it below. For now, read 
up on gratings in your favorite optics book.  Jenkins and White or Hecht are great. Also study gratings 
and common spectrometer configurations in Chapter 2 and Section 6.2 in the Diffraction Grating Hand-
book 4th Edition, by the Richardson Grating Laboratory on our web site. Be sure you understand how to 
calculate dispersion and resolving power.  
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ii) Photometry via CCDs 
 

In Fig. 8, the dispersed line spectrum is projected onto an “image plane” at the right of the figure. The 
remaining experimental challenge is to record the intensity here as a function of position. Older systems 
used film. In a monochromator, each line is imaged one-at-a-time by sweeping a single channel of light de-
tection, such as a photodiode or photomultiplier along the line, recording intensity vs position. Alterna-
tively, a position sensitive light detector, such as a Charge Coupled Device, or CCD, can be placed in 
the image plane. A CCD can be thought of as a pixilated photocell. Each pixel, or “bucket”, stores an 
amount of charge proportional to the integrated light intensity at that location. At the end of the inte-
gration period, the charge is shifted out, bucket brigade style, in a raster-like scan over the whole device. 
A single charge- integrating amplifier on the last bucket records the amount of charge after each shift, 
and this is easily translated into a map of light intensity vs. pixel. CCD’s are the enabling technology for 
digital cameras and camcorders, and are revolutionizing spectrometry, astronomy, and all image driven 
sciences. Read up on CCDs in Chap. 6 and 7 of McLean, and also at the following websites: 
 

http://www.kodak.com/US/en/digital/ccd/appNotes.shtml. 
 

http://www.oceanoptics.com/products/howccddetectorworks.asp 
 
 
c. The Ocean Optics Fiber Spectrometer 
   
The device used in this experiment is an Ocean Optics SD2000 fiber spectrometer. This is a compact, 
computerized device built for applied and industrial settings. Fiber optics is used to transmit the light 
from the “specimen” to the instrument, allowing remote measurements of absorption, transmission, 
and reflectance spectra. The resolution is modest, roughly 0.5 nm at λ = 500 nm. For comparison, the 
Fabry-Perot interferometer used in the Zeeman effect experiment in this course can achieve resolutions 
of fractions of an Angstrom.  However, the resolution of the OO-SD2000 is more than adequate for 
the purposes of this lab, advantageous in its ease of use, and also a thought provoking example of how 
our laboratory techniques can evolve into applied and entrepreneurial outgrowths.  Check out the 
Ocean Optics website www.oceanoptics.com, especially the topics under 
 

http://www.oceanoptics.com/technical/systemspecifications.asp 
 

The SD2000 uses two gratings to cover the complete optical spectrum. One, covering the range 632-
880 nm, is directly attached to the DAQ system, and called “Master”. The other, covering the range 
371-677 nm, is piggy-backed on the DAQ, and is called “Slave”. These names are just about the DAQ 
hookup; the two gratings are functionally equivalent over their respective wavelength ranges. 
 
 Each grating has 1200 lines/mm, and is mounted in a crossed Czerny-Turner configuration. See Fig.1, 
the Richardson manual, or your optics book. The first mirror focuses the light on the grating; the sec-
ond mirror is to focus the slit image on the CCD. The input slit width is fixed at 10µ, the effective focal 
distance from the second mirror to the CCD is 50mm, and the system has an effective magnification of 
M~2.0.  Spherical aberrations in the mirrors produce the pronounced shoulder or “coma” on one side 
of the slit image. 
 
The sensor is a Sony Linear CCD with a single line of 2048 pixels, each 14µ wide, for a total sensor 
length of 2.86cm. For details on the CCD see the discussion and link under “CCD detector response” 
at  

http://www.oceanoptics.com/technical/systemsensitivity.asp 
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d.  Understand Your Resolution/ Questions to Answer 
 
Before setting out on a real measurement, a competent experimenter will first think through the ex-
perimental realities, and understand the expected level of success for a given idea. No sense wasting 
time and money if you can prove beforehand that it doesn’t work! 
 
In this experiment, the Balmer series and molecular spectra will be easy to measure. (The molecular 
spectra are NOT easy to interpret, but that’s another matter!). The experimental technique is pushed by 
the need to resolve the spin-orbit splitting in sodium, a 5 parts in 5000 measurement. Can the device do 
this? 
  

i) Under the link http://www.oceanoptics.com/technical/opticalresolution.asp 
you will find a discussion of the optical resolution expected for the OO devices. For our configuration, 
with a 10 µ slit, the size of the slit image in the CCD plane is 3.2 pixels. 
 

ii) Using the grating equation, assuming that the angle of incidence equals the angle of reflec-
tion, i = θ, calculate θ for the sodium D line. Note that the spectrometer works entirely in the first or-
der regime, m=1. 
 

iii) Starting from the grating equation, show that the angular dispersion of the grating is  

  

d!

d"
= d cos"

r
 

iv) For a system with focal length f and magnification M, show that an angular dispersion trans-
lates into linear dispersion in the sensor plane according to  !x = Mf !"  

 

v) Calculate the separation in pixels at the CCD plane of the sodium D doublet. Compare to 
the device resolution. Is this going to work? 
 

vi) Calculate the spectral range for this system: how large an interval in frequency can be covered 
by the configuration of optics and grating? Compare to the sensitivity ranges for the master and slave 
spectrometer.  
 

vii) Explain briefly how a Czerny-Turner spectrometer works.  (A diagram would be appropri-
ate.) How is it possible to build one in such a small box? 

 

viii) Explain briefly why it is not possible to use the Ocean Optics instrument to study the hy-
drogen Lyman series spectrum. 
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6. Experimental Procedure 
 
a. Using the Lamps and Spectrometer 
 
Figure out how to take the lamps in and out of the spring loaded holder. Put the mercury lamp in the 
holder. Turn the variac to zero. Turn on the switch on the bud-box and the variac, and turn up the 
variac until the lamp comes on. Turn the voltage back down until you are just over threshold. 
Be careful, the lamps get hot! 
 

The spectrometer is controlled by a program called OOIBASE. The basic procedure is as follows: 
 

• Open OOIBASE by double clicking the shortcut titled “Ocean Optics Spectrometer.” 
• SD2000 used in this lab has two input channels: Master and Slave. Each channel has different spectral 
range: Master from 620 to 880 nm and Slave from 360 to 680 nm. The scope window can be 
switched between two channels using channel selection button. (See right.) Note: When the 
active channel is switched, any captured images will not be translated, i.e., an image taken in 
Master channel will not appear correctly in Slave channel. Therefore, it is important to include the 
channel mode used with any spectra. (More on this later.)  
• To acquire a spectrum, point the fiber optics cable to the source lamp, avoiding the 
saturation, and click the image capture button. (See right.) You can vary the intensity by just 
moving the fiber back. Alternatively, you can experiment with the “Integration Time” using the menu 
options. Once a satisfactory image is captured, save the image using the procedure below: 
• To save the file for later viewing using OOIBASE, choose “Save Sample Spectrum” under “File.” 
Save the image using an identifiable name, but no extension is needed. The file will be saved with ex-
tension “.ooi” – an OOIBASE readable file. 
• To save the file for analysis using IGOR or Excel, choose “Export Spectrum” and “Sample” under 
“File.” Save the image using an identifiable name, but no extension is needed. The file will be saved 
with extension “.sco” – an ASCII file readable by both Excel and IGOR. Instructions on doing data 
acquisition with IGOR are in Appendix 2.  
• There are additional parameters associated with the spectrometer that can be used to control the data 
acquisition process. For more information, refer to OOIBASE online help. 
 
b. Calibrate on Mercury 
 

The ultimate calibration of a grating/CCD system is done using standard reference spectra. The rela-
tion between CCD channel number and tabulated wavelength is fit with a calibration function that at-
tempts to give the best interpolation across the whole CCD array. The OO procedure is outlined in 
Appendix 1. The angular dispersion varies as cos(θ), so an obvious calibration function might be quad-
ratic in channel number (why?). OO uses a cubic function to accommodate the tilt of the grating in the 
optical bench. 
 

Find a spectral reference. The CRC handbook is good, as usual. Or try the NIST website. For mercury, 
check out the term diagram in Melissinos Fig 2.13, which is mercury, not hydrogen as mislisted.   
 

Capture the mercury spectrum and identify lines. If you have started with a good calibration this should 
be straightforward. Good starting points are the yellow doublet at 576.9 and 578.9, the green line at 
546.0 and the purple line at 435.8. Plot wavelength error (residual) vs. wavelength. 
How does the accuracy vary over the device? The yellow doublet is very close to the sodium D lines.  Is 
the calibration in this region accurate to get the resolution you will need? 
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If you want to re-calibrate, use the procedure in Appendix 1, make a new Hg spectrum and compare 
with the old one, and your reference lines. Try some obvious variations in your procedure as well.  Can 
you get a good calibration over a smaller range by choosing input values just in that range? Or does it 
help to get three numbers spread as evenly as possible over the spectral range? These comparisons al-
low you to understand the systematic uncertainty in your calibration, which is probably the largest un-
certainty in every measurement here.  
 
c. Measurement of the Balmer series in Hydrogen 
 

• Install a hydrogen tube, and capture the Balmer series. Try to do this soon after your mercury 
checkout, so that the calibration is preserved. 
• Compare the wavelengths of your lines to the accepted values. Identify the transitions they repre-
sent. 
• Calculate the Rydberg constant from your data. A keen method is to plot 
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using your “guess” for n2.  You should get a straight line whose slope is RH. The straightness of the 
line tests the Balmer hypothesis. Be sure to estimate the uncertainty on RH! 
• You have measured the quantized energy levels of hydrogen. This is one of the most famous re-
sults in modern physics. Autograph your plot and send it to your parents. 
• Repeat for deuterium and determine m/MP. 

 
d. Measurement of Fine Structure in Sodium 
 

• Obtain the sodium spectrum. The sodium lamp requires some time to warm up. Begin acquisition 
once the sodium lamp is glowing in yellow. 

• Measure all of the lines. The D line is whopping, everything else is tiny by comparison. You may 
have to adjust integration times in order to get good measurements for the other lines.  Make sure you 
can resolve all of the different doublets. 

• Identify all of the lines. You may find many lines that don’t seem to belong. Is there something 
else in the lamp? Check the line listing in the CRC Handbook. Use Fig. 6. Organize them according to 
final states, and see if you can reproduce Fig .4.  What do the “series” represent? Can you fit a Balmer-
like relation using a “quantum defect”? (See Haken and Wolf)  

• Measure the splittings of transitions involving the 3P level. In nm and eV! How “fine” is the 
structure (what % of the total transition energy)? Are they the same across 3P? Can you find split lines 
corresponding to non-3P transitions?  Do the ratios of the splittings scale according to the rule in sec 
3b?  What is the approximate magnitude of the “internal atomic magnetic field”?  
 
e. Measurement of the Band Spectrum of Diatomic Nitrogen  
 

• Use the N2 lamp. Carefully measure the positions of the coarser ‘comb’ of lines in the spectrum 
to check if indeed the vibrational states are uniformly spaced as predicted by harmonic oscillator 
equation in Section 4. Extract the harmonic oscillator frequency,  ω0, from your measurements.  Push-
ing this SHO model a little further, we can make an estimate of the strength of the chemical bond that holds 
the nitrogen molecule together from the expression  ω = √ (k/m), where m is the reduced mass of the pair 
of nitrogen atoms coupled to each other by a ‘spring constant’ k,  whose stiffness is determined by 
the strength of the N-N covalent bond.  Calculate k in units of newtons per meter.   
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• Measure the energy levels of the nitrogen quantum rotator from the measured spectrum and com-
pare with the expected energies calculated from the rigid rotor equation in Sec. 4, using a simple clas-
sical approximation for the moment of inertia of the N2 rotator.  You can treat the molecule as two 
point masses connected by a rigid rod, rotating end-over-end. What is the moment of inertia of N2?  
What is the distance between atoms in the molecule?   
 

• Compare the vibrational and rotational frequencies for Nitrogen.   
 

• Hydrogen and deuterium are both diatomic molecules (H2 and D2), so how come we don’t see all 
this interesting molecular structure in these cases? 
 

• If you observed that the vibrational emission lines were not exactly equally spaced, how big is the 
deviation, in percentage terms, and what do you think causes this deviation from the ideal SHO spec-
trum? 
 

• There is an extremely useful kitchen appliance that works on the principle of rotational excita-
tions of molecules.  Can you explain the operation of a microwave oven in these terms? 
 

• Compare your results with expectations for hydrogen, sodium, nitrogen, … 
 

• Does your measurement of  m/MP  agree with the expected value?  Discuss. 
 

 (Be sure to answer all questions in the earlier parts of the writeup.) 
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Appendix 1:   SD2000 Calibration 
 

a. Both Master and Slave channel require separate calibration processes. To calibrate the spectrometer, 
an element with at least 3 peaks of known wavelength within the range of each channel is needed. 
Check CRC Handbook of Chemistry and Physics under section E.  Krypton and Mercury satisfy the 
above requirement for Master and Slave channels, respectively. 
 

b. Begin calibration by resetting coefficients to the original factory-supplied values: 
 

Coefficients Master Channel Slave Channel 
First Coefficient 0.147333 0.176653 

Second Coefficient -1.081E-5 -1.171E-5 
Intercept 627.921 365.655 

 
c. For each channel, capture the spectrum of calibration element, being careful not to saturate the peak. 
Make sure that there are more than 3 visible peaks and their rough wavelength to match the theoretical 
values found in CRC. (Spectrometer can be assumed to be reasonably calibrated at the onset.) 
 

d. Using the cursor mode button (see right), identify the pixel number of each peak at the highest 
intensity. The pixel number and the intensity can be read from the data bar at the bottom of the 
screen. (Note: It is useful to zoom into each peak by dragging the cursor to enlarge the region of inter-
est. To go back to the full spectrum view, use the zoom out button.) (See right.)   
 

e. Tabulate the calibration data on an Excel worksheet as follows: 
 

True Wavelength (nm) Pixel Number (Pixel Number)2 

404.66 226 51076 
435.83 409 167281 

 

f. OOIBASE relates the pixel number to the wavelength by using a second-order polyno-
mial: !p = I + C

1
p + C

2
p
2 . The goal of the calibration is to determine the values of I – the intercept, C1 

– the first coefficient and C2 – the second coefficient. These values can be obtained by performing a 
linear regression  analysis on Excel: 
 

• Under “Tools,” choose “Data Analysis.” In the menu, choose “Regression.” 
 

• Use true wavelength column for “Input Y Range,” and both pixel number and pixel number 
squared as “Input X Range.” (Data range can easily be chosen by pressing the button within 
the input field. See right.)  
 

• The regression analysis result will be output into another worksheet. Under “Coefficients:”  
“Intercept” is the value of I 
                                      “X Variable 1” is the value of C1  
                                      “X Variable 2” is the value of C2 
 

• In addition, the value of “R squared” should be very close to 1. (Why?) 
 
g. In OOIBASE, under “Setup,” choose “Configure Spectrometer.” Under “Spectrometer Channel,” 
select “Master” and enter appropriate values of three coefficients, then switch to “Slave” and repeat the 
procedure. Close the window by clicking “OK.” 
 
h. Restart OOIBASE for new calibrated coefficients to take effect. 
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Appendix 2:  Exporting OO Files and Analysis with IGOR 
 
1.  Any OOIBASE spectrum saved as the scope output (with .sco extension) can be imported di-
rectly into Origin worksheet. [Origin is no longer available in the labs, but use of IGOR is similar. 
 

a) Start Origin. There should be three windows present: Data1 sheet, Toolbox and the Script Window. 
b) Making sure Data 1 window is highlighted, under “File,” choose “Import,” then “ASCII.” 
c) To display “.sco” files, “Files of Type” needs to be changed to display all file types, i.e., by selecting 
“*.*”. Locate the target file and open. 
d) To enter both hydrogen and deuterium spectrum under one worksheet, import two sets of data into 
two different worksheets. Add a new column to the hydrogen data worksheet (“Add New Column” 
under “Column”), cut the deuterium intensity data from the other worksheet and paste into the new 
column. 
 

2. To plot the entire data sheet, simply choose “Scatter” under “Plot” while Data worksheet win-
dow is highlighted. 
 

3.  To plot each peak 
 

a) First, identify the peak by zooming into the plot using “zoom” function from Toolbox (Magnifying 
lens icon). Click and drag the rectangle around the peak. Once the peak is sufficiently magnified, iden-
tify the starting and ending wavelength. 
b) From Data window, highlight the data range as identified in step 3. Easiest way to do this is to 
highlight the row of the beginning wavelength, then scroll and highlight the ending wavelength while 
depressing the “shift” key. This procedure will automatically highlight all rows in between the beginning 
and the ending wavelength. 
c) Once the desired data region is highlighted, plot the peak by choosing “Scatter” under “Plot.” 
Choose “Wavelength” as “X column” and “Intensity” as “Y column. 
 

4.To fit the lineshape: it turns out that, except for the coma on one side, the lineshape is Gaussian. 
This has nothing to do with normal statistics, but instead with the way the slit image is made from light 
propagating down the fiber. To do the fit, simply choose “Fit Gaussian” under “Analysis.” A textbox 
with relevant information will show up. Origin defines a Gaussian function as: 
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where y0 is the baseline offset, A is the total area under the Gaussian from the baseline, x0 is the center 
of the peak and w is 2� , approximately 0.849 of FWHM. Be 
 

5. To fit multiple Gaussians on one set of data points (i.e., sodium), choose “Fit Multi-peaks” then 
“Gaussian” under “Analysis.” Enter the number of peaks and the initial half width. (The estimate given 
by Origin works fine.) Select the rough location of each peak by double clicking the mouse on the plot. 
A textbox with complete specifications of each Gaussian will appear. The one additional line is the sum 
of all Gaussians.  It is useful to color code each fit.  Simply double click each fit line to specify its color. 
(See sample 2 at the end of this write up.) 



2/15/06 19                            Atomic and Molecular Spectroscopy 
 

 

Sample 1:  Origin resolution graph of hydrogen-deuterium doublet 

Sample 2: Origin analysis graph of sodium doublet 
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